Giải thích các bước giải:
\(\begin{array}{l}
a.6{x^3} - 5{x^2} + 4x - 1 = 6{x^3} - 2{x^2} - 3{x^2} + x + 3x - 1 = 2{x^2}(3x - 1) - x(3x - 1) + (3x - 1) = (3x - 1)(2{x^2} - x + 1)\\
\Rightarrow (6{x^3} - 5{x^2} + 4x - 1):(2{x^2} - x + 1) = 3x - 1\\
b.{x^4} - 5{x^2} + 4 = ({x^2} - 4)({x^2} - 1) = (x - 1)(x - 2)(x + 1)(x + 2) = ({x^2} - 3x + 2)({x^2} + 3x + 2)\\
\Rightarrow \left( {{x^4} - 5{x^2} + 4} \right):\left( {{x^2} - 3x + 2} \right) = {x^2} + 3x + 2\\
c.{x^3} - 2{x^2} - 5x + 6 = ({x^3} + 2{x^2}) - (4{x^2} + 8x) + (3x + 6) = (x + 2)({x^2} - 4x + 3)\\
\Rightarrow \left( {{x^3} - 2{x^2} - 5x + 6} \right):(x + 2) = {x^2} - 4x + 3
\end{array}\)