Đáp án:
Giải thích các bước giải:
`(x+1)/(x-2) \in Z `
`=> x+1 \vdots x-2 `
`=> (x-2) +3 \vdots x-2`
Do `x-2 \vdots x-2 `
Nên `=> 3 \vdots x-2 `
`=> x-2 \in Ư(3)={\pm1;\pm3}`
`=> x\in {3;1;5;-1}`
`(2x-1)/(x+5) \in Z`
`=> 2x-1 \vdots x+5 `
`=> 2(x+5) - 11 \vdots x+5 `
Do `2x+5 \vdots x+5 `
Nên `11 \vdots x+5 `
`=> x+5 \in Ư(11)={\pm1;\pm11}`
`=>x\in{-4;-6;6;-16}`
`(10x-9)/(2x-3) \in Z`
`=> 10x-9 \vdots 2x-3 `
`=> 5.(2x-3) +6 \vdots 2x-3 `
Do `5.(2x-3) \vdots 2x-3 `
`=> 6 \vdots 2x-3 `
`=> 2x-3 \in Ư(6)={\pm1;\pm2;\pm3;\pm6}`
`=> 2x \in{4;2;5;1;6;0;9;-3}`
`=>x\in{2;1;5/2;1/2;3;0;9/2;-3/2}`