$\begin{cases}\cfrac{5x}{x+1}+\cfrac{y}{y-3}=27\\\cfrac{2x}{x+1}-\cfrac{3y}{y-3}=4\end{cases}$
Đặt `x/(x+1)=a;y/(y-3)=b`
$⇔\begin{cases}5a+b=27\\2a-3b=4\end{cases}$
$⇔\begin{cases}b=27-5a\\2a-3(27-5a)=4\end{cases}$
$⇔\begin{cases}b=27-5a\\2a-81+15a=4\end{cases}$
$⇔\begin{cases}b=27-5a\\17a=85\end{cases}$
$⇔\begin{cases}b=27-5.5\\a=5\end{cases}$
$⇔\begin{cases}b=2\\a=5\end{cases}$
ta có `x/(x+1)=5`
`<=>x=(x+1).5`
`<=>x=5x+5`
`<=>4x=-5`
`<=>x=(-5)/4`
`y/(y-3)=2`
`<=>y=(y-3).2`
`<=>y=2y-6`
`<=>y=6`
Vậy `(x;y)=((-5)/4;6)`