Đáp án:
Giải thích các bước giải:
`sin x-\sqrt{3}cos x=1`
`⇔ \frac{1}{2}sin x-\frac{\sqrt{3}}{2}cos x=\frac{1}{2}`
`⇔ cos (x+\frac{\pi}{6})=\frac{2}{3}\pi`
`⇔` \(\left[ \begin{array}{l}x+\dfrac{\pi}{6}=\dfrac{2}{3}\pi+k2\pi\ (k \in \mathbb{Z})\\x+\dfrac{\pi}{6}=-\dfrac{2}{3}\pi+k2\pi\ (k \in \mathbb{Z})\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=\dfrac{\pi}{2}+k2\pi\ (k \in \mathbb{Z})\\x=-\dfrac{5\pi}{6}+k2\pi\ (k \in \mathbb{Z})\end{array} \right.\)
Vậy ...........