Đáp án:
BẠN THAM KHẢO NHA!
Giải thích các bước giải:
$\frac{x-5}{2015}$ + $\frac{x-4}{2016}$ = $\frac{x-3}{2017}$ + $\frac{x-2}{2018}$
⇔ ($\frac{x-5}{2015}$-1) + ($\frac{x-4}{2016}$-1) = ($\frac{x-3}{2017}$-1) + ($\frac{x-2}{2018}$-1)
⇔ $\frac{x-2020}{2015}$ + $\frac{x-2020}{2016}$ = $\frac{x-2020}{2017}$ + $\frac{x-2020}{2018}$
⇔ ($x-2020$)( $\frac{1}{2015}$ + $\frac{1}{2016}$ - $\frac{1}{2017}$ - $\frac{1}{2018}$ = $0$
⇔ $x-2020$ = $0$
⇔ $x$ = $2020$