`***`Lời giải`***`
`x^3-x^2+x-6=0`
`<=>x^3-2x^2+x^2+3x-2x-6=0`
`<=>(x^3+x^2+3x)+(-2x^2-2x-6)=0`
`<=>x(x^2+x+3)-2(x^2+x+3)=0`
`<=>(x-2)(x^2+x+3)=0`
Ta có:
`x^2+x+3=(x+1/2)^2+11/4`
Mà `(x+1/2)^2≥0` với `∀x`
`<=>(x+1/2)^2+11/4≥11/4>0`
`=>x-2=0`
`<=>x=2`
Vậy `S={2}`