Đáp án:
`a)x-\sqrt{x}-1=0(x>=0)`
`<=>x-\sqrt{x}+1/4-5/4=0`
`<=>(\sqrt{x}-1/2)^2-5/4=0`
`<=>(\sqrt{x}-1/2-\sqrt5/2)(\sqrt{x}-1/2+\sqrt5/2)=0`
Vì `1/2<sqrt5/2`
`=>\sqrt5/2-1/2>0`
`=>sqrtx+sqrt5/2-1/2>0`
`<=>\sqrt{x}-1/2-\sqrt5/2=0`
`<=>sqrtx=(sqrt5+1)/2`
`<=>x=(sqrt5+1)^2/4`
`<=>x=(6+2sqrt5)/4=(3+sqrt5)/2`
`b)(3-2x)^2=\sqrt{(2x-3)^2}`
`<=>(2x-3)^4=(2x-3)^2`
`<=>(2x-3)^2[(2x-3)^2-1]=0`
`<=>(2x-3)^2(2x-4)(2x-2)=0`
`<=>` \(\left[ \begin{array}{l}x=\dfrac32\\x=2\\x=1\end{array} \right.\)