Đáp án:
$x\in\{\dfrac34\pi+k\pi,\dfrac{8k\pi-\pi +4\arcsin \left(\dfrac{\sqrt{2}}{6}\right)}{8}, \dfrac{3\pi +8k\pi-4\arcsin \left(\dfrac{\sqrt{2}}{6}\right)}{8}\}$
Giải thích các bước giải:
ĐKXĐ: $x\ne \dfrac{\pi}{2}+k\pi, k\in Z$
Ta có:
$1+3\sin2x=2\tan x$
$\to 3+3\sin2x=2\tan x+2$
$\to 3\left(1+\sin2x\right)=2\left(\tan x+1\right)$
$\to 3\left(\sin^2x+\cos^2x+2\sin x\cos x\right)=2\left(\dfrac{\sin x}{\cos x}+1\right)$
$\to 3\left(\sin x+\cos x\right)^2=2\cdot\dfrac{\sin x+\cos x}{\cos x}$
$\to 3\left(\sin x+\cos x\right)^2-2\cdot\dfrac{\sin x+\cos x}{\cos x}=0$
$\to \left(\sin x+\cos x\right)\left(3\left(\sin x+\cos x\right)-\dfrac{2}{\cos x}\right)=0$
$\to \left(\sin x+\cos x\right)\left(3\left(\sin x\cos x+\cos^2x\right)-2\right)=0$
$\to \left(\sin x+\cos x\right)\left(\dfrac32\left(2\sin x\cos x+2\cos^2x-1+1\right)-2\right)=0$
$\to \left(\sin x+\cos x\right)\left(\dfrac32\left(\sin2x+\cos2x+1\right)-2\right)=0$
$\to \left(\sin x+\cos x\right)\left(3\left(\sin2x+\cos2x+1\right)-4\right)=0$
$\to \left(\sin x+\cos x\right)\left(3\left(\sin2x+\cos2x\right)-1\right)=0$
$\to \sin x+\cos x=0$
$\to \sin x=-\cos x$
$\to \dfrac{\sin x}{\cos x}=-1$
$\to \tan x=-1$
$\to x=\dfrac34\pi+k\pi$
Hoặc $3\left(\sin2x+\cos2x\right)-1=0$
$\to \sin2x+\cos2x=\dfrac13$
$\to \sin2x\cdot\dfrac{\sqrt{2}}{2}+\cos2x\cdot\dfrac{\sqrt{2}}{2}=\dfrac{\sqrt{2}}{6}$
$\to \sin2x\cdot\cos\left(\dfrac{\pi}{4}\right)+\cos2x\cdot\sin\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{6}$
$\to \sin\left(2x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{6}$
$\to 2x+\dfrac{\pi}{4}=\arcsin\dfrac{\sqrt{2}}{6}+k2\pi\to x=\dfrac{8k\pi-\pi +4\arcsin \left(\dfrac{\sqrt{2}}{6}\right)}{8}$
Hoặc $2x+\dfrac{\pi}{4}=\pi-\arcsin\dfrac{\sqrt{2}}{6}+k2\pi\to x=\dfrac{3\pi +8k\pi-4\arcsin \left(\dfrac{\sqrt{2}}{6}\right)}{8}$