Đáp án:
Giải thích các bước giải:
$sin(2x+\frac{\pi}{2})=sin(x+\frac{\pi}4)$
⇔\(\left[ \begin{array}{l}2x+\frac{\pi}{2}=x+\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{2}=\pi-(x+\frac{\pi}4)+k2\pi\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=\frac{-\pi}{4}+k2\pi\\3x=\frac{\pi}{4}+k2\pi\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=\frac{-\pi}{4}+k2\pi\\x=\frac{\pi}{12}+\frac{k2\pi}{3}\end{array} \right.\)