Đáp án:
1) $x = 1$
2) $x = \left\{1;3\right\}$
Giải thích các bước giải:
1) $\ln(x +1) + \ln(x +3) - \ln(x +7) = 0$ $(*)$
$ĐK: \, x> -1$
$(*) \Leftrightarrow \ln[(x+1)(x+3)] =\ln(x +7)$
$\Leftrightarrow (x+1)(x +3) = x + 7$
$\Leftrightarrow x^2 + 3x - 4 = 0$
$\Leftrightarrow \left[\begin{array}{l}x = 1\\x = -4\quad (loại)\end{array}\right.$
Vậy $x = 1$
2) $5^{x -1}+ 5^{3 -x} - 26 = 0$
$\Leftrightarrow \dfrac{5^x}{5} + \dfrac{5^3}{5^x} - 26 = 0$
$\Leftrightarrow \left(5^x\right)^2 + 5.5^3 - 26.5.5^x = 0$
$\Leftrightarrow \left(5^x\right)^2 - 130.5^x + 625 = 0$
$\Leftrightarrow \left[\begin{array}{l}5^x = 5\\5^x = 125\end{array}\right.$
$\Leftrightarrow \left[\begin{array}{l}x = 1\\x= 3\end{array}\right.$
Vậy $x = \left\{1;3\right\}$