`sin(2x) - 2cos(x) + \sqrt{3} = \sqrt{3}sin(x)`
`⇔ sin(2x) - 2cos(x) + \sqrt{3} - \sqrt{3} sin(x) = 0`
`⇔ (1-sin(x))(\sqrt{3}-2cos(x))=0`
`⇔`\(\left[ \begin{array}{l}1-sin(x)=0\\\sqrt{3}-2cos(x)=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=\dfrac{\pi}{2}+2\pi n\\x=\dfrac{\pi}{6}+2\pi n\\x=\dfrac{11\pi}{6}+2\pi n\end{array} \right.\)