Đáp án:
\(S = \left\{\pi + k4\pi;\ -\dfrac{\pi}{4} + k4\pi;\ \dfrac{7\pi}{3} + k4\pi\ \Bigg|\ k\in\Bbb Z\right\}\)
Giải thích các bước giải:
\(\begin{array}{l}
\quad y = 1 -\sin(x+\pi) + 2\cos\left(\dfrac{2\pi + x}{2}\right)\\
\Leftrightarrow y = 1 + \sin x - 2\cos\dfrac x2\\
\Rightarrow y' = \cos x + \sin\dfrac x2\\
\text{Khi đó:}\\
\quad y' =0\\
\Leftrightarrow \cos x + \sin\dfrac x2 = 0\\
\Leftrightarrow 1 - 2\sin^2\dfrac x2 + \sin\dfrac x2 = 0\\
\Leftrightarrow \left(\sin\dfrac x2 -1\right)\left(2\sin\dfrac x2 + 1\right) = 0\\
\Leftrightarrow \left[\begin{array}{l}\sin\dfrac x2 = 1\\\sin\dfrac x2 = - \dfrac12\end{array}\right.\\
\Leftrightarrow \left[\begin{array}{l}\dfrac x2 = \dfrac{\pi}{2} + k2\pi\\\dfrac x2 = - \dfrac{\pi}{6} + k2\pi\\\dfrac x2 = \dfrac{7\pi}{6} + k2\pi\end{array}\right.\\
\Leftrightarrow \left[\begin{array}{l}x = \pi + k4\pi\\x = -\dfrac{\pi}{4} + k4\pi\\x = \dfrac{7\pi}{3} + k4\pi\end{array}\right.\quad (k\in\Bbb Z)\\
\text{Vậy}\ S = \left\{\pi + k4\pi;\ -\dfrac{\pi}{4} + k4\pi;\ \dfrac{7\pi}{3} + k4\pi\ \Bigg|\ k\in\Bbb Z\right\}
\end{array}\)