`a)` `\sqrt{16x^2+24x+9}-5=0`
`<=>\sqrt{(4x+3)^2}=5`
`<=>|4x+3|=5`
`<=>` \(\left[ \begin{array}{l}4x+3=5\\4x+3=-5\end{array} \right.\)`<=>` \(\left[ \begin{array}{l}4x=2\\4x=-8\end{array} \right.\)`<=>` \(\left[ \begin{array}{l}x=\dfrac{1}{2}\\x=-2\end{array} \right.\)
Vậy `S={1/2;-2}`
`b)` `\sqrt{x^2-4x+4}=7`
`<=>\sqrt{(x-2)^2}=7`
`<=>|x-2|=7`
`<=>` \(\left[ \begin{array}{l}x-2=7\\x-2=-7\end{array} \right.\) \(\left[ \begin{array}{l}x=9\\x=-5\end{array} \right.\)
Vậy `S={9;-5}`
`c)` `\sqrt{x^2-6x+9}=x+5` ĐKXĐ: `x\geq-5`
`<=>\sqrt{(x-3)^2}=x+5`
`<=>|x-3|=x+5`
`<=>` \(\left[ \begin{array}{l}x-3=x+5\\x-3=-(x+5)\end{array} \right.\)`<=>` \(\left[ \begin{array}{l}x-x=5+3\\x-3=-x-5\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}0x=8\\x+x=-5+3\end{array} \right.\)`<=>`\(\left[ \begin{array}{l}x∉R\\2x=-2\end{array} \right.\)`<=>x=-1` `(TMĐK)`
Vậy `x=-1`