Đáp án:
\(\begin{array}{l}
a,\\
P = a - b\\
b,\\
P = - \sqrt 2
\end{array}\)
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
P = \left( {\dfrac{{a\sqrt a + b\sqrt b }}{{\sqrt a + \sqrt b }} - \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt a - \sqrt b }}} \right):\dfrac{{\sqrt a - \sqrt b }}{{\sqrt a + \sqrt b }}\\
= \left( {\dfrac{{{{\sqrt a }^3} + {{\sqrt b }^3}}}{{\sqrt a + \sqrt b }} - \dfrac{{{{\sqrt a }^2}.\sqrt b - {{\sqrt b }^2}.\sqrt a }}{{\sqrt a - \sqrt b }}} \right):\dfrac{{\sqrt a - \sqrt b }}{{\sqrt a + \sqrt b }}\\
= \left( {\dfrac{{\left( {\sqrt a + \sqrt b } \right)\left( {{{\sqrt a }^2} - \sqrt a .\sqrt b + {{\sqrt b }^2}} \right)}}{{\sqrt a + \sqrt b }} - \dfrac{{\sqrt a .\sqrt b .\left( {\sqrt a - \sqrt b } \right)}}{{\sqrt a - \sqrt b }}} \right):\dfrac{{\sqrt a - \sqrt b }}{{\sqrt a + \sqrt b }}\\
= \left( {\dfrac{{\left( {\sqrt a + \sqrt b } \right)\left( {a - \sqrt {ab} + b} \right)}}{{\sqrt a + \sqrt b }} - \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt a - \sqrt b }}} \right):\dfrac{{\sqrt a - \sqrt b }}{{\sqrt a + \sqrt b }}\\
= \left[ {\left( {a - \sqrt {ab} + b} \right) - \sqrt {ab} } \right]:\dfrac{{\sqrt a - \sqrt b }}{{\sqrt a + \sqrt b }}\\
= \left( {a - 2\sqrt {ab} + b} \right):\dfrac{{\sqrt a - \sqrt b }}{{\sqrt a + \sqrt b }}\\
= \left( {{{\sqrt a }^2} - 2\sqrt a .\sqrt b + {{\sqrt b }^2}} \right):\dfrac{{\sqrt a - \sqrt b }}{{\sqrt a + \sqrt b }}\\
= {\left( {\sqrt a - \sqrt b } \right)^2}.\dfrac{{\sqrt a + \sqrt b }}{{\sqrt a - \sqrt b }}\\
= \left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)\\
= {\sqrt a ^2} - {\sqrt b ^2}\\
= a - b\\
b,\\
a = \sqrt {2 - \sqrt 3 } = \sqrt {\dfrac{1}{2}.\left( {4 - 2\sqrt 3 } \right)} = \sqrt {\dfrac{1}{2}} .\sqrt {4 - 2\sqrt 3 } \\
= \dfrac{1}{{\sqrt 2 }}.\sqrt {3 - 2\sqrt 3 + 1} = \dfrac{1}{{\sqrt 2 }}.\sqrt {{{\sqrt 3 }^2} - 2.\sqrt 3 .1 + {1^2}} \\
= \dfrac{1}{{\sqrt 2 }}.\sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} = \dfrac{1}{{\sqrt 2 }}.\left| {\sqrt 3 - 1} \right| = \dfrac{1}{{\sqrt 2 }}.\left( {\sqrt 3 - 1} \right)\\
b = \sqrt {2 + \sqrt 3 } = \sqrt {\dfrac{1}{2}.\left( {4 + 2\sqrt 3 } \right)} = \sqrt {\dfrac{1}{2}} .\sqrt {4 + 2\sqrt 3 } \\
= \dfrac{1}{{\sqrt 2 }}.\sqrt {3 + 2\sqrt 3 + 1} = \dfrac{1}{{\sqrt 2 }}.\sqrt {{{\sqrt 3 }^2} + 2.\sqrt 3 .1 + {1^2}} \\
= \dfrac{1}{{\sqrt 2 }}.\sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} = \dfrac{1}{{\sqrt 2 }}.\left| {\sqrt 3 + 1} \right| = \dfrac{1}{{\sqrt 2 }}.\left( {\sqrt 3 + 1} \right)\\
\Rightarrow P = a - b = \dfrac{1}{{\sqrt 2 }}.\left( {\sqrt 3 - 1} \right) - \dfrac{1}{{\sqrt 2 }}.\left( {\sqrt 3 + 1} \right)\\
= \dfrac{1}{{\sqrt 2 }}.\left[ {\left( {\sqrt 3 - 1} \right) - \left( {\sqrt 3 + 1} \right)} \right]\\
= \dfrac{1}{{\sqrt 2 }}.\left( {\sqrt 3 - 1 - \sqrt 3 - 1} \right)\\
= \dfrac{1}{{\sqrt 2 }}.\left( { - 2} \right)\\
= - \sqrt 2
\end{array}\)