Bài 4: Rút gọn các biểu thức:
a.
$\frac{\sqrt[]{3+\sqrt[]{5}}}{\sqrt[]{2}}$
=$\frac{\sqrt[]{(3+\sqrt[]{5}).2}}{2}$
=$\frac{\sqrt[]{6+2\sqrt[]{5}}}{2}$
=$\frac{\sqrt[]{(\sqrt[]{5}+1)²}}{2}$
=$\frac{|\sqrt[]{5}+1|}{2}$
=$\frac{\sqrt[]{5}+1}{2}$
b.
$\frac{\sqrt[]{x-\sqrt[]{2x-1}}}{\sqrt[]{2}}$ (với x>1)
=$\frac{\sqrt[]{(x-\sqrt[]{2x-1}).2}}{2}$
=$\frac{\sqrt[]{2x-2\sqrt[]{2x-1}}}{2}$
=$\frac{\sqrt[]{(\sqrt[]{2x-1}-1)²}}{2}$
=$\frac{|\sqrt[]{2x-1}-1|}{2}$
=$\frac{\sqrt[]{2x-1}-1}{2}$
c.
$\frac{\sqrt[]{3x+\sqrt[]{6x-1}}}{\sqrt[]{2}}$ (x>$\frac{1}{6}$)
=$\frac{\sqrt[]{6x+2\sqrt[]{6x-1}}}{2}$
=$\frac{\sqrt[]{(\sqrt[]{6x-1}+1)²}}{2}$
= $\frac{|\sqrt[]{6x-1}+1|}{2}$
=$\frac{\sqrt[]{6x-1}+1}{2}$
Bài 5: Tính:
A=$\sqrt[]{8+3\sqrt[]{7}}$.$\sqrt[]{8-3\sqrt[]{7}}$
=$\sqrt[]{(8+3\sqrt[]{7}).(8-3\sqrt[]{7})}$
=$\sqrt[]{8²-(3\sqrt[]{7})²}$
=$\sqrt[]{64-63}$
=$\sqrt[]{1}$
=1
B=$\sqrt[]{2+\sqrt[]{3}}$.$\sqrt[]{2+\sqrt[]{2+\sqrt[]{3}}}$.$\sqrt[]{2-\sqrt[]{2+\sqrt[]{3}}}$
=$\sqrt[]{2+\sqrt[]{3}}$.$\sqrt[]{2²-(\sqrt[]{2+\sqrt[]{3}})²}$
=$\sqrt[]{2+\sqrt[]{3}}$.$\sqrt[]{4-2-\sqrt[]{3}}$
=$\sqrt[]{2+\sqrt[]{3}}$.$\sqrt[]{2-\sqrt[]{3}}$
=$\sqrt[]{2²-(\sqrt[]{3})²}$
=1
C=(1+$\sqrt[]{2}$).($\sqrt[]{2}$+$\sqrt[]{1+\sqrt[]{2}}$).($\sqrt[]{2}$-$\sqrt[]{1+\sqrt[]{2}}$)
=(1+$\sqrt[]{2}$).[($\sqrt[]{2}$)²-($\sqrt[]{1+\sqrt[]{2}}$)²]
=(1+$\sqrt[]{2}$).(2-1-$\sqrt[]{2}$)
=(1+$\sqrt[]{2}$).(1-$\sqrt[]{2}$)
=1²-($\sqrt[]{2}$)²
=-1
Bạn tham khảo thử nha. Chúc bạn học tốt