`H=\frac{x}{x-4}-\frac{1}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2} \ (x\ge 0, x\ne 4)`
`H=\frac{x}{(\sqrt{x}+2)(\sqrt{x}-2)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}`
`H=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}`
`H=\frac{x+2\sqrt{x}}{x-4}`
`H=\frac{\sqrt{x}(\sqrt{x}+2)}{x-4}`
`H=\frac{\sqrt{x}}{\sqrt{x}-2}`
`K=\frac{\sqrt{x}}{\sqrt{x}+6}+\frac{1}{\sqrt{x}-6}+\frac{17\sqrt{x}+30}{x-36}` `(x\ge 0, x\ne 36)`
`K=\frac{\sqrt{x}(\sqrt{x}-6)+\sqrt{x}+6+17\sqrt{x}+30}{(\sqrt{x}-6)(\sqrt{x}+6)}`
`K=\frac{x-6\sqrt{x}+18\sqrt{x}+36}{(\sqrt{x}-6)(\sqrt{x}+6)}`
`K=\frac{x+12\sqrt{x}+36}{(\sqrt{x}-6)(\sqrt{x}+6)}`
`K=\frac{(\sqrt{x}+6)^2}{(\sqrt{x}-6)(\sqrt{x}+6)}`
`K=\frac{\sqrt{x}+6}{\sqrt{x}-6}`
`D=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}+\frac{6\sqrt{x}-4}{1-x}\ (x\ne 1, x\ge 0)`
`D=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}`
`D=\frac{\sqrt{x}(\sqrt{x}+1)+3(\sqrt{x}-1)-6\sqrt{x}+4}{x-1}`
`D=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}`
`D=\frac{x-2\sqrt{x}+1}{x-1}`
`D=\frac{(\sqrt{x}-1)^2}{x-1}`
`D=\frac{\sqrt{x}-1}{\sqrt{x}+1}`
`A=\frac{\sqrt{x}+3}{\sqrt{x}+1}-\frac{5}{1-\sqrt{x}}+\frac{4}{x-1}\ (x\ne 1, x\ge 0)`
`A=\frac{\sqrt{x}+3}{\sqrt{x}+1}+\frac{5}{\sqrt{x}-1}+\frac{4}{x-1}`
`A=\frac{(\sqrt{x}+3)(\sqrt{x}-1)+5\sqrt{x}+5+4}{x-1}`
`A=\frac{x+2\sqrt{x}-3+5\sqrt{x}+9}{x-1}`
`A=\frac{x+7\sqrt{x}+6}{x-1}`
`A=\frac{x+\sqrt{x}+6\sqrt{x}+6}{x-1}`
`A=\frac{\sqrt{x}(\sqrt{x}+1)+6(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}`
`A=\frac{\sqrt{x}+6}{\sqrt{x}-1}`