Đáp án:
 Câu 4: 
$x=5; x=-3$
Giải thích các bước giải:
 Câu 4: 
\[\begin{array}{l}
a){\left( {x - 1} \right)^2} = 16\\
 \Rightarrow {x^2} - 2x + 1 = 16\\
 \Rightarrow {x^2} - 2x - 15 = 0\\
 \Rightarrow \left[ \begin{array}{l}
x = 5\\
x =  - 3
\end{array} \right.\\
c)x + 3 = 1\\
 \Rightarrow x =  - 2\\
b){\left( {x - 1} \right)^4} = 16 = {2^4}\\
 \Rightarrow \left[ \begin{array}{l}
x - 1 = 2\\
x - 1 =  - 2
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
x = 3\\
x =  - 1
\end{array} \right.\\
d)\left[ \begin{array}{l}
x - 1 = 1\\
x - 1 =  - 1
\end{array} \right. \Rightarrow \left[ \begin{array}{l}
x = 2\\
x = 0
\end{array} \right.
\end{array}\]
Câu 5:
\[\begin{array}{l}
a)\left( {y - \sqrt 5 } \right).\left( {y + \sqrt 5 } \right)\\
b){x^2} - 2.\sqrt 7 .x + {\sqrt 7 ^2} = {\left( {x - \sqrt 7 } \right)^2}\\
c)4{a^2} + 4a\sqrt 3  + 3 = {\left( {2a} \right)^2} + 2.2a.\sqrt 3  + {\sqrt 3 ^2} = {\left( {2a + \sqrt 3 } \right)^2}
\end{array}\]
Câu 6: 
\[\begin{array}{l}
a)\sqrt {{{\sqrt 3 }^2} + 2\sqrt 3  + 1}  - \sqrt {{{\left( {2\sqrt 3 } \right)}^2} + 2.2.\sqrt 3  + {1^2}} \\
 = \sqrt {{{\left( {\sqrt 3  + 1} \right)}^2}}  - \sqrt {{{\left( {2\sqrt 3  + 1} \right)}^2}} \\
 = \sqrt 3  + 1 - 2\sqrt 3  - 1 =  - \sqrt 3 \\
b)\sqrt {{2^2} - 2.2.\sqrt 3  + {{\sqrt 3 }^2}}  + \sqrt {{{\sqrt 3 }^2} - 2.\sqrt 3  + 1} \\
 = \sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}}  + \sqrt {{{\left( {\sqrt 3  - 1} \right)}^2}} \\
 = 2 - \sqrt 3  + \sqrt 3  - 1 = 1\\
c)\sqrt {{4^2} + 2.4.\sqrt 5  + {{\sqrt 5 }^2}}  + \sqrt {{4^2} - 2.4.\sqrt 5  + {{\sqrt 5 }^2}} \\
 = \sqrt {{{\left( {4 + \sqrt 5 } \right)}^2}}  + \sqrt {{{\left( {4 - \sqrt 5 } \right)}^2}}  = 4 + \sqrt 5  + 4 - \sqrt 5  = 8\\
d)\sqrt {{{\sqrt 3 }^2} - 2.\sqrt 3 .\sqrt 5  + {{\sqrt 5 }^2}}  + \sqrt {{{\sqrt 3 }^2} + 2.\sqrt 3 .\sqrt 5  + {{\sqrt 5 }^2}} \\
 = \sqrt 5  - \sqrt 3  + \sqrt 3  + \sqrt 5  = 2\sqrt 5 \\
e)\sqrt {36 - 3}  = \sqrt {33} \\
f)\sqrt {{x^2} + 2.x.\dfrac{1}{x} + {{\left( {\dfrac{1}{x}} \right)}^2}}  + x = \sqrt {{{\left( {x + \dfrac{1}{x}} \right)}^2}}  + \left( x \right) =  - x - \dfrac{1}{x} + x = \dfrac{{ - 1}}{x}\left( {x < 0} \right)\\
g)A = \sqrt {\sqrt 5  - \sqrt {3 - \sqrt {{3^2} - 2.3.2.\sqrt 5  + {{\left( {2.\sqrt 5 } \right)}^2}} } } \\
 = \sqrt {\sqrt 5  - \sqrt {3 - \left( {2\sqrt 5  - 3} \right)} }  = \sqrt {\sqrt 5  - \sqrt {6 - 2\sqrt 5 } }  = \sqrt {\sqrt 5  - \sqrt 5  + 1}  = 1
\end{array}\]