Đáp án:
4) \(Max = \dfrac{5}{2}\)
Giải thích các bước giải:
\(\begin{array}{l}
1)A = - \left( {2{x^2} - 2.x\sqrt 2 .\sqrt 2 + 2 - 7} \right)\\
= - {\left( {x\sqrt 2 - \sqrt 2 } \right)^2} + 7\\
Do:{\left( {x\sqrt 2 - \sqrt 2 } \right)^2} \ge 0\forall x \in R\\
\to - {\left( {x\sqrt 2 - \sqrt 2 } \right)^2} \le 0\\
\to - {\left( {x\sqrt 2 - \sqrt 2 } \right)^2} + 7 \le 7\\
\to Max = 7\\
\Leftrightarrow x\sqrt 2 - \sqrt 2 = 0\\
\Leftrightarrow x = 1\\
3)C = - \left( {3{x^2} + 2.x\sqrt 3 .\dfrac{1}{{\sqrt 3 }} + \dfrac{1}{3} - \dfrac{{22}}{3}} \right)\\
= - {\left( {x\sqrt 3 + \dfrac{1}{{\sqrt 3 }}} \right)^2} + \dfrac{{22}}{3}\\
Do:{\left( {x\sqrt 3 + \dfrac{1}{{\sqrt 3 }}} \right)^2} \ge 0\forall x \in R\\
\to - {\left( {x\sqrt 3 + \dfrac{1}{{\sqrt 3 }}} \right)^2} \le 0\\
\to - {\left( {x\sqrt 3 + \dfrac{1}{{\sqrt 3 }}} \right)^2} + \dfrac{{22}}{3} \le \dfrac{{22}}{3}\\
\to Max = \dfrac{{22}}{3}\\
\Leftrightarrow x\sqrt 3 + \dfrac{1}{{\sqrt 3 }} = 0\\
\Leftrightarrow x = - \dfrac{1}{3}\\
5)E = {x^2} + 6x + 8 - 2\left( {{x^2} + 14x + 48} \right)\\
= - {x^2} - 22x - 88\\
= - \left( {{x^2} + 2.x.11 + 121 - 33} \right)\\
= - {\left( {x + 11} \right)^2} + 33\\
Do:{\left( {x + 11} \right)^2} \ge 0\forall x \in R\\
\to - {\left( {x + 11} \right)^2} \le 0\\
\to - {\left( {x + 11} \right)^2} + 33 \le 33\\
\to Max = 33\\
\Leftrightarrow x = - 11\\
2)B = - \left( {5{x^2} + 2.x\sqrt 5 .2\sqrt 5 + 20 - 26} \right)\\
= - {\left( {x\sqrt 5 + 2\sqrt 5 } \right)^2} + 26\\
Do:{\left( {x\sqrt 5 + 2\sqrt 5 } \right)^2} \ge 0\forall x \in R\\
\to - {\left( {x\sqrt 5 + 2\sqrt 5 } \right)^2} \le 0\\
\to - {\left( {x\sqrt 5 + 2\sqrt 5 } \right)^2} + 26 \le 26\\
\to Max = 26\\
\Leftrightarrow x\sqrt 5 + 2\sqrt 5 = 0\\
\to x = - 2\\
4)D = 2{x^2} - x - 3 - 5\left( {2{x^2} - x - 1} \right)\\
= - 8{x^2} + 4x + 2\\
= - \left( {8{x^2} - 2.2\sqrt 2 x.\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{2} - \dfrac{5}{2}} \right)\\
= - {\left( {2\sqrt 2 x - \dfrac{1}{{\sqrt 2 }}} \right)^2} + \dfrac{5}{2}\\
Do:{\left( {2\sqrt 2 x - \dfrac{1}{{\sqrt 2 }}} \right)^2} \ge 0\\
\to - {\left( {2\sqrt 2 x - \dfrac{1}{{\sqrt 2 }}} \right)^2} \le 0\\
\to - {\left( {2\sqrt 2 x - \dfrac{1}{{\sqrt 2 }}} \right)^2} + \dfrac{5}{2} \le \dfrac{5}{2}\\
\to Max = \dfrac{5}{2}\\
\Leftrightarrow 2\sqrt 2 x - \dfrac{1}{{\sqrt 2 }} = 0\\
\Leftrightarrow x = \dfrac{1}{4}\\
6)F = - 2\left( {4{x^2} - 4x + 1} \right) + 15x - 5 + 2\\
= - 8{x^2} + 23x - 5 = - \left( {8{x^2} - 2.2\sqrt 2 x.\dfrac{{23}}{{4\sqrt 2 }} + \dfrac{{529}}{{32}} - \dfrac{{369}}{{32}}} \right) = \\
= - {\left( {2\sqrt 2 x - \dfrac{{23}}{{4\sqrt 2 }}} \right)^2} + \dfrac{{369}}{{32}}\\
Do:{\left( {2\sqrt 2 x - \dfrac{{23}}{{4\sqrt 2 }}} \right)^2} \ge 0\\
\to - {\left( {2\sqrt 2 x - \dfrac{{23}}{{4\sqrt 2 }}} \right)^2} \le 0\\
\to - {\left( {2\sqrt 2 x - \dfrac{{23}}{{4\sqrt 2 }}} \right)^2} + \dfrac{{369}}{{32}} \le \dfrac{{369}}{{32}}\\
\to Max = \dfrac{{369}}{{32}}\\
\Leftrightarrow 2\sqrt 2 x - \dfrac{{23}}{{4\sqrt 2 }} = 0\\
\to x = \dfrac{{23}}{{16}}
\end{array}\)