Đáp án:
$\begin{array}{l}
a)A = 2\sqrt 5 - \sqrt {125} - \sqrt {80} + \sqrt {605} \\
= 2\sqrt 5 - 5\sqrt 5 - 4\sqrt 5 + 11\sqrt 5 \\
= 4\sqrt 5 \\
b)B = \sqrt {15 - \sqrt {216} } + \sqrt {33 - 12\sqrt 6 } \\
= \sqrt {15 - 6\sqrt 6 } + \sqrt {24 - 2.3.2.\sqrt 6 + 9} \\
= \sqrt {9 - 2.3.\sqrt 6 + 6} + \sqrt {{{\left( {2\sqrt 6 - 3} \right)}^2}} \\
= \sqrt {{{\left( {3 - \sqrt 6 } \right)}^2}} + 2\sqrt 6 - 3\\
= 3 - \sqrt 6 + 2\sqrt 6 - 3\\
= \sqrt 6 \\
c)2\sqrt {\dfrac{{16}}{3}} - 3\sqrt {\dfrac{1}{{27}}} - 6\sqrt {\dfrac{4}{{75}}} \\
= \dfrac{8}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }} - 6.\dfrac{2}{{5\sqrt 3 }}\\
= \left( {8 - 1 - \dfrac{{12}}{5}} \right).\dfrac{1}{{\sqrt 3 }}\\
= \dfrac{{23\sqrt 3 }}{{15}}\\
d)F = 2\sqrt {27} - 6\sqrt {\dfrac{4}{3}} + \dfrac{3}{5}\sqrt {75} \\
= 6\sqrt 3 - \dfrac{{12}}{{\sqrt 3 }} + 3\sqrt 3 \\
= \dfrac{{27 - 12}}{{\sqrt 3 }} = \dfrac{{15\sqrt 3 }}{3} = 5\sqrt 3 \\
g)M = \left( {3\sqrt 2 - 2\sqrt 3 } \right)\left( {3\sqrt 2 + 2\sqrt 3 } \right)\\
= {\left( {3\sqrt 2 } \right)^2} - {\left( {2\sqrt 3 } \right)^2}\\
= 18 - 12 = 6\\
h)N = \left( {2\sqrt {1\dfrac{9}{{16}}} - \sqrt {5\dfrac{1}{{16}}} } \right):\sqrt {16} \\
= \left( {2\sqrt {\dfrac{{25}}{{16}}} - \sqrt {\dfrac{{81}}{{16}}} } \right):4\\
= \left( {2.\dfrac{5}{4} - \dfrac{9}{4}} \right):4\\
= \dfrac{1}{{16}}\\
K = \dfrac{1}{2}{\left( {\sqrt 6 + \sqrt 5 } \right)^2} - \dfrac{1}{4}\sqrt {120} - \sqrt {\dfrac{5}{2}} \\
= \dfrac{1}{2}.\left( {11 + 2\sqrt {30} } \right) - \dfrac{1}{4}.2\sqrt {30} - \dfrac{{\sqrt {10} }}{2}\\
= \dfrac{{11}}{2} + \sqrt {30} - \dfrac{1}{2}\sqrt {30} - \dfrac{{\sqrt {10} }}{2}\\
= \dfrac{{11 + \sqrt {30} - \sqrt {10} }}{2}
\end{array}$
$\begin{array}{l}
A = \sqrt {5 + 2\sqrt 6 } - \sqrt {5 - 2\sqrt 6 } \\
= \sqrt {{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2}} - \sqrt {{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}} \\
= \sqrt 3 + \sqrt 2 - \sqrt 3 + \sqrt 2 \\
= 2\sqrt 2
\end{array}$