Đáp án:
c. \(\left[ \begin{array}{l}
x = 2\\
x = - 1
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
b.\frac{1}{3}\left( {2x - 5} \right) = - \frac{2}{3} - \frac{3}{2}\\
\to \frac{1}{3}\left( {2x - 5} \right) = \frac{{ - 4 - 9}}{6} = - \frac{{13}}{6}\\
\to 2x - 5 = - \frac{{13}}{6}:\frac{1}{3} = \frac{{ - 13}}{2}\\
\to 2x = \frac{{ - 13}}{2} + 5 = \frac{{ - 13 + 10}}{2}\\
\to 2x = - \frac{3}{2}\\
\to x = - \frac{3}{4}\\
c.\left| {x - \frac{1}{2}} \right| = \frac{3}{2}\\
\to \left[ \begin{array}{l}
x - \frac{1}{2} = \frac{3}{2}\\
x - \frac{1}{2} = - \frac{3}{2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \frac{{3 + 1}}{2}\\
x = \frac{{ - 3 + 1}}{2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 2\\
x = - 1
\end{array} \right.\\
d.2\left| {2x - \frac{2}{3}} \right| = \frac{3}{4} - 2 = \frac{{3 - 8}}{4}\\
\to 2\left| {2x - \frac{2}{3}} \right| = - \frac{5}{4}\\
\to \left| {2x - \frac{2}{3}} \right| = - \frac{5}{4}:2 = - \frac{5}{8}\\
Do:\left| {2x - \frac{2}{3}} \right| \ge 0\forall x \in R
\end{array}\)
⇒ Phương trình vô nghiệm