Đáp án:
f. \(\left[ \begin{array}{l}
x = \dfrac{9}{4}\\
x = \dfrac{{16}}{9}
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
DK:x \ge 0;x \ne 1\\
P = \dfrac{{3x + 3\sqrt x - 3}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 1} \right)}} - \dfrac{{\sqrt x + 1}}{{\sqrt x + 2}} - \dfrac{{\sqrt x + 2}}{{\sqrt x - 1}}\\
= \dfrac{{3x + 3\sqrt x - 3 - x + 1 - x - 4\sqrt x - 4}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 1} \right)}}\\
= \dfrac{{x - \sqrt x - 6}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 1} \right)}} = \dfrac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 1} \right)}}\\
= \dfrac{{\sqrt x - 3}}{{\sqrt x - 1}}\\
e.P = \sqrt x + 4\\
\to \dfrac{{\sqrt x - 3}}{{\sqrt x - 1}} = \sqrt x + 4\\
\to \sqrt x - 3 = x + 3\sqrt x - 4\\
\to x + 2\sqrt x - 1 = 0\\
\to {\left( {\sqrt x + 1} \right)^2} - 2 = 0\\
\to {\left( {\sqrt x + 1} \right)^2} = 2\\
\to \left[ \begin{array}{l}
\sqrt x + 1 = \sqrt 2 \\
\sqrt x + 1 = - \sqrt 2
\end{array} \right.\\
\to \left[ \begin{array}{l}
\sqrt x = - 1 + \sqrt 2 \\
\sqrt x = - 1 - \sqrt 2 \left( l \right)
\end{array} \right.\\
\to x = 3 - 2\sqrt 2 \\
f.\dfrac{1}{{P + 4}} \in Z\\
\Leftrightarrow P + 4 \in U\left( 1 \right)\\
\to \left[ \begin{array}{l}
P + 4 = 1\\
P + 4 = - 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
P = - 3\\
P = - 5
\end{array} \right.\\
\to \left[ \begin{array}{l}
\dfrac{{\sqrt x - 3}}{{\sqrt x - 1}} = - 3\\
\dfrac{{\sqrt x - 3}}{{\sqrt x - 1}} = - 5
\end{array} \right. \to \left[ \begin{array}{l}
\sqrt x - 3 = - 3\sqrt x + 3\\
\sqrt x - 3 = - 5\sqrt x + 5
\end{array} \right.\\
\to \left[ \begin{array}{l}
4\sqrt x = 6\\
6\sqrt x = 8
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{9}{4}\\
x = \dfrac{{16}}{9}
\end{array} \right.\left( {TM} \right)\\
g.Q = \sqrt x \left( {2 - P} \right) = \sqrt x \left( {2 - \dfrac{{\sqrt x - 3}}{{\sqrt x - 1}}} \right)\\
= \sqrt x \left( {\dfrac{{2\sqrt x - 2 - \sqrt x + 3}}{{\sqrt x - 1}}} \right)\\
= \sqrt x \left( {\dfrac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right) = \sqrt x .\left( {\dfrac{{\sqrt x - 1 + 2}}{{\sqrt x - 1}}} \right)\\
= \sqrt x .\left( {1 + \dfrac{2}{{\sqrt x - 1}}} \right)\\
= \sqrt x + \dfrac{{2\sqrt x }}{{\sqrt x - 1}} = \sqrt x + \dfrac{{2\left( {\sqrt x - 1} \right) + 2}}{{\sqrt x - 1}}\\
= \sqrt x + 2 + \dfrac{2}{{\sqrt x - 1}}\\
= \sqrt x - 1 + \dfrac{2}{{\sqrt x - 1}} + 3\\
Do:x \ge 0\\
Co - si:\sqrt x - 1 + \dfrac{2}{{\sqrt x - 1}} \ge 2\sqrt {\left( {\sqrt x - 1} \right).\dfrac{2}{{\sqrt x - 1}}} = 2\sqrt 2 \\
\to \sqrt x - 1 + \dfrac{2}{{\sqrt x - 1}} + 3 \ge 2\sqrt 2 + 3\\
\to Min = 2\sqrt 2 + 3\\
\Leftrightarrow \sqrt x - 1 = \dfrac{2}{{\sqrt x - 1}}\\
\Leftrightarrow {\left( {\sqrt x - 1} \right)^2} = 2\\
\to \left[ \begin{array}{l}
\sqrt x - 1 = \sqrt 2 \\
\sqrt x - 1 = - \sqrt 2
\end{array} \right.\\
\to \left[ \begin{array}{l}
\sqrt x = 1 + \sqrt 2 \\
\sqrt x = 1 - \sqrt 2 \left( l \right)
\end{array} \right.\\
\to x = 3 + 2\sqrt 2
\end{array}\)
( T sửa lại đề đoạn \(\sqrt {x + 1} \) ở tử số phân thức thứ 2 thành \(\sqrt x + 1\) như vậy bài toán mới hợp lý để tính toán được nha)