Đáp án + Giải thích các bước giải:
`a//3x-2=x+1`
`<=>3x-x=2+1`
`<=>2x=3`
`<=>x=(3)/(2)`
Vậy `S={(3)/(2)}`
`b//(x+2)/(3)=(x-1)/(2)`
`<=>(2(x+2))/(6)=(3(x-1))/(6)`
`=>2(x+2)=3(x-1)`
`<=>2x+4=3x-3`
`<=>2x-3x=-4-3`
`<=>-x=-7`
`<=>x=7`
Vậy `S={7}`
`c//(x-2)(x+1)=0`
`⇔` \(\left[ \begin{array}{l}x-2=0\\x+1=0\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=2\\x=-1\end{array} \right.\)
Vậy `S={2;-1}`
`d//(x+1)/(x)=(x-2)/(x-1)` `(ĐKXĐ:x\ne{0;1})`
`<=>((x+1)(x-1))/(x(x-1))=(x(x-2))/(x(x-1))`
`=>(x+1)(x-1)=x(x-2)`
`<=>x^{2}-1=x^{2}-2x`
`<=>x^{2}-x^{2}+2x=1`
`<=>2x=1`
`<=>x=(1)/(2)(TM)`
Vậy `S={(1)/(2)}`