Đáp án:
`M=(sqrta-2)/(sqrta+1)`
`N=(2sqrta+2a+2)/sqrta`
`O=(-5sqrtx+2)/(sqrtx+3)`
Giải thích các bước giải:
`m)M=(1-sqrta/(1+sqrta)):((sqrta+3)/(sqrta-2)+(sqrta+2)/(3-sqrta)+(sqrta+2)/(a-5sqrta+6))(a>=0,a ne 4,a ne 9)`
`M=((sqrta+1-sqrta)/(sqrta+1)):(((sqrta+3)(sqrta-3))/((sqrta-2)(sqrta-3))-((sqrta+2)(sqrta-2))/((sqrta-2)(sqrta-3))+(sqrta+2)/((sqrta-2)(sqrta-3)))`
`M=1/(sqrta+1):((a-9-a+4+sqrta+2)/((sqrta-2)(sqrta-3)))`
`M=1/(sqrta+1):(sqrta-3)/((sqrta-2)(sqrta-3))`
`M=1/(sqrta+1):1/(sqrta-2)`
`M=(sqrta-2)/(sqrta+1)`
`n)N=(asqrta-1)/(a-sqrta)-(asqrta+1)/(a+sqrta)+(sqrta-1/sqrta)*((sqrta+1)/(sqrta-1)+(sqrta-1)/(sqrta+1))(a>0,a ne 1)`
`N=((sqrta-1)(a+sqrta+1))/(sqrta(sqrta-1))-((sqrta+1)(a-sqrta+1))/(sqrta(sqrta+1))+((a-1)/sqrta)*((sqrta+1)^2/((sqrta-1)(sqrta+1))+(sqrta-1)^2/((sqrta-1)(sqrta+1)))`
`N=(a+sqrta+1)/sqrta-(a-sqrta+1)/sqrta+((sqrta-1)(sqrta+1))/sqrta*(a+2sqrta+1+a-2sqrta+1)/((sqrta-1)(sqrta+1))`
`N=(a+sqrta+1-a+sqrta-1)/sqrta+(2a+2)/sqrta`
`N=(2sqrta)/sqrta+(2a+2)/sqrta`
`N=(2sqrta+2a+2)/sqrta`
`o)O=(3\sqrtx-2)/(1-sqrtx)+(15sqrtx-11)/(x+2sqrtx-3)-(2sqrtx+3)/(sqrtx+3)(x>0,x ne 1)`
`O=(15sqrtx-11)/((sqrtx-1)(sqrtx+3))-(3sqrtx-2)/(sqrtx-1)-(2sqrtx+3)/(sqrtx-1)`
`O=(15sqrtx-11)/((sqrtx-1)(sqrtx+3))-((3sqrtx-2)(sqrtx+3))/((sqrtx-1)(sqrtx+3))-((2sqrtx+3)(sqrtx-1))/((sqrtx-1)(sqrtx+3))`
`O=(15sqrtx-11-(3x+7sqrtx-6)-(2x+sqrtx-3))/((sqrtx-1)(sqrtx+3))`
`O=(15sqrtx-11-3x-7sqrtx+6-2x-sqrtx+3)/((sqrtx-1)(sqrtx+3))`
`O=(-5x-7sqrtx-2)/((sqrtx-1)(sqrtx+3))`
`O=(-(5x-7sqrtx+2))/((sqrtx-1)(sqrtx+3))`
`Q=(-(sqrtx-1)(5sqrtx-2))/((sqrtx-1)(sqrtx+3))`
`O=(-5sqrtx+2)/(sqrtx+3)`