Đáp án:
$\begin{array}{l}
20)\\
a)Dkxd:x \ge 0;x \ne 1\\
P = \left( {\dfrac{{x + 2}}{{\sqrt x + 1}} - \sqrt x } \right):\left( {\dfrac{{\sqrt x - 4}}{{1 - x}} - \dfrac{{\sqrt x }}{{\sqrt x + 1}}} \right)\\
= \dfrac{{x + 2 - x - \sqrt x }}{{\sqrt x + 1}}:\dfrac{{ - \sqrt x + 4 - \sqrt x \left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\
= \dfrac{{2 - \sqrt x }}{{\sqrt x + 1}}.\dfrac{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}{{ - \sqrt x + 4 - x + \sqrt x }}\\
= \left( {2 - \sqrt x } \right).\dfrac{{\sqrt x - 1}}{{4 - x}}\\
= \dfrac{{\sqrt x - 1}}{{2 + \sqrt x }}\\
c)P = \dfrac{{\sqrt x - 1}}{{\sqrt x + 2}} = \dfrac{{\sqrt x + 2 - 3}}{{\sqrt x + 2}}\\
= 1 - \dfrac{3}{{\sqrt x + 2}}\\
Do:\sqrt x + 2 \ge 2\\
\Rightarrow \dfrac{1}{{\sqrt x + 2}} \le \dfrac{1}{2}\\
\Rightarrow - \dfrac{3}{{\sqrt x + 2}} \ge - \dfrac{3}{2}\\
\Rightarrow 1 - \dfrac{3}{{\sqrt x + 2}} \ge 1 - \dfrac{3}{2}\\
\Rightarrow P \ge - \dfrac{1}{2}\\
\Rightarrow GTNN:P = - \dfrac{1}{2}\\
Khi:x = 0\\
B21)\\
a)Dkxd:\left\{ \begin{array}{l}
x \ge 0\\
x \ne 9
\end{array} \right.\\
Q = \left( {\dfrac{{2\sqrt x }}{{\sqrt x + 3}} - \dfrac{{\sqrt x }}{{3 - \sqrt x }} - \dfrac{{3x + 3}}{{x - 9}}} \right)\\
:\left( {\dfrac{{2\sqrt x - 2}}{{\sqrt x - 3}} - 1} \right)\\
= \dfrac{{2\sqrt x \left( {\sqrt x - 3} \right) + \sqrt x \left( {\sqrt x + 3} \right) - 3x - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\
:\dfrac{{2\sqrt x - 2 - \sqrt x + 3}}{{\sqrt x - 3}}\\
= \dfrac{{2x - 6\sqrt x + x + 3\sqrt x - 3x - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}.\dfrac{{\sqrt x - 3}}{{\sqrt x + 1}}\\
= \dfrac{{ - 3\sqrt x - 3}}{{\sqrt x + 3}}.\dfrac{1}{{\sqrt x + 1}}\\
= \dfrac{{ - 3}}{{\sqrt x + 3}}\\
b)x = \dfrac{2}{{2 + \sqrt 3 }}\left( {tmdk} \right)\\
= \dfrac{{2\left( {2 - \sqrt 3 } \right)}}{{{2^2} - 3}} = 4 - 2\sqrt 3 \\
= {\left( {\sqrt 3 - 1} \right)^2}\\
= \sqrt 3 - 1\\
Q = \dfrac{{ - 3}}{{\sqrt x + 3}}\\
= \dfrac{{ - 3}}{{\sqrt 3 - 1 + 3}}\\
= \dfrac{{ - 3}}{{\sqrt 3 + 2}}\\
= \dfrac{{ - 3\left( {2 - \sqrt 3 } \right)}}{{{2^2} - 3}}\\
= 3\sqrt 3 - 6\\
c)x \ge 0;x \ne 9\\
Q < - \dfrac{1}{2}\\
\Rightarrow \dfrac{{ - 3}}{{\sqrt x + 3}} < - \dfrac{1}{2}
\end{array}$
$\begin{array}{l}
\dfrac{{ - 3}}{{\sqrt x + 3}} < - \dfrac{1}{2}\\
\Rightarrow \dfrac{{ - 3}}{{\sqrt x + 3}} + \dfrac{1}{2} < 0\\
\Rightarrow \dfrac{{ - 6 + \sqrt x + 3}}{{2\left( {\sqrt x + 3} \right)}} < 0\\
\Rightarrow \sqrt x - 3 < 0\\
\Rightarrow \sqrt x < 3\\
\Rightarrow x < 9\\
Vay\,0 \le x < 9\\
d)Q = - \dfrac{1}{3}\\
\Rightarrow \dfrac{{ - 3}}{{\sqrt x + 3}} = - \dfrac{1}{3}\\
\Rightarrow \sqrt x + 3 = 9\\
\Rightarrow \sqrt x = 6\\
\Rightarrow x = 36\left( {tmdk} \right)\\
e)Q = \dfrac{{ - 3}}{{\sqrt x + 3}}\\
Do:\sqrt x + 3 \ge 3\\
\Rightarrow \dfrac{1}{{\sqrt x + 3}} \le \dfrac{1}{3}\\
\Rightarrow \dfrac{{ - 3}}{{\sqrt x + 3}} \ge \dfrac{{ - 3}}{3} = - 1\\
\Rightarrow Q \ge - 1\\
\Rightarrow GTNN:Q = - 1\\
Khi:x = 0
\end{array}$