Giải thích các bước giải:
\(\begin{array}{l}
1,\\
{\rm{DK:}}\,\,\,\left\{ \begin{array}{l}
x \ge 0\\
x \ne 4\\
x \ne 9
\end{array} \right.\\
Q = \dfrac{{\sqrt x + 2}}{{\sqrt x - 3}} - \dfrac{{\sqrt x + 1}}{{\sqrt x - 2}} - 3.\dfrac{{\sqrt x - 1}}{{x - 5\sqrt x + 6}}\\
= \dfrac{{\sqrt x + 2}}{{\sqrt x - 3}} - \dfrac{{\sqrt x + 1}}{{\sqrt x - 2}} - \dfrac{{3.\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right) - \left( {\sqrt x + 1} \right)\left( {\sqrt x - 3} \right) - 3\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\left( {x - 4} \right) - \left( {x - 2\sqrt x - 3} \right) - 3\sqrt x + 3}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{x - 4 - x + 2\sqrt x + 3 - 3\sqrt x + 3}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{ - \sqrt x + 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{ - 1}}{{\sqrt x - 3}}\\
2,\\
Q < - 1 \Leftrightarrow \dfrac{{ - 1}}{{\sqrt x - 3}} + 1 < 0\\
\Leftrightarrow \dfrac{{ - 1 + \left( {\sqrt x - 3} \right)}}{{\sqrt x - 3}} < 0\\
\Leftrightarrow \dfrac{{\sqrt x - 4}}{{\sqrt x - 3}} < 0\\
\Leftrightarrow 3 < \sqrt x < 4\\
\Leftrightarrow 9 < x < 16\\
3,\\
Q \in Z \Leftrightarrow \dfrac{{ - 1}}{{\sqrt x - 3}} \in Z \Leftrightarrow \sqrt x - 3 \in \left\{ { \pm 1} \right\}\\
\Rightarrow \sqrt x \in \left\{ {2;4} \right\}\\
\Rightarrow x \in \left\{ {4;16} \right\}\\
x \ne 4 \Rightarrow x = 16
\end{array}\)