Đáp án: A = $\frac{97}{300}$
B = $\frac{101}{306}$
C = $\frac{200}{101}$
D = $\frac{3}{20}$
Giải thích các bước giải:
a ) A = $\frac{1}{3.4}$ + $\frac{1}{4.5}$ + $\frac{1}{5.6}$ + ..... + $\frac{1}{99.100}$
A = $\frac{1}{3}$ - $\frac{1}{4}$ + $\frac{1}{4}$ - $\frac{1}{5}$ + $\frac{1}{5}$ - $\frac{1}{6}$ + ..... + $\frac{1}{99}$ - $\frac{1}{100}$
A = $\frac{1}{3}$ - $\frac{1}{100}$
A = $\frac{97}{300}$
b ) B = $\frac{1}{1.4}$ + $\frac{1}{4.7}$ + $\frac{1}{7.10}$ + ..... + $\frac{1}{99.102}$
3 . B = $\frac{3}{1.4}$ + $\frac{3}{4.7}$ + $\frac{3}{7.10}$ + ..... + $\frac{3}{99.102}$
3 . B = 1 - $\frac{1}{4}$ + $\frac{1}{4}$ - $\frac{1}{7}$ + $\frac{1}{7}$ - $\frac{1}{10}$ + ..... + $\frac{1}{99.}$ - $\frac{1}{102}$
3 . B = 1 - $\frac{1}{102}$
3 . B = $\frac{101}{102}$
B = $\frac{101}{102}$ : 3
B = $\frac{101}{306}$
c ) C = $\frac{2^2}{1.3}$ + $\frac{2^2}{3.5}$ + $\frac{2^2}{5.7}$ + ..... + $\frac{2^2}{99.101}$
C = $\frac{4}{1.3}$ + $\frac{4}{3.5}$ + $\frac{4}{5.7}$ + ..... + $\frac{4}{99.101}$
C : 2 = $\frac{2}{1.3}$ + $\frac{2}{3.5}$ + $\frac{2}{5.7}$ + ..... + $\frac{2}{99.101}$
C : 2 = 1 - $\frac{1}{3}$ + $\frac{1}{3}$ - $\frac{1}{5}$ + $\frac{1}{5}$ - $\frac{1}{7}$ + ..... + $\frac{1}{99}$ - $\frac{1}{101}$
C : 2 = 1 - $\frac{1}{101}$
C : 2 = $\frac{100}{101}$
C = $\frac{100}{101}$ . 2
C = $\frac{200}{101}$
d ) D = $\frac{1}{2.5}$ + $\frac{1}{5.8}$ + $\frac{1}{8.11}$ + $\frac{1}{11.14}$ + $\frac{1}{14.17}$ + $\frac{1}{17.20}$
3 . D = $\frac{3}{2.5}$ + $\frac{3}{5.8}$ + $\frac{3}{8.11}$ + $\frac{3}{11.14}$ + $\frac{3}{14.17}$ + $\frac{3}{17.20}$
3 . D = $\frac{1}{2}$ - $\frac{1}{5}$ + $\frac{1}{5}$ - $\frac{1}{8}$ + $\frac{1}{8}$ - $\frac{1}{11}$ + $\frac{1}{11}$ - $\frac{1}{14}$ + $\frac{1}{14}$ - $\frac{1}{17}$ + $\frac{1}{17}$ - $\frac{1}{20}$
3 . D = $\frac{1}{2}$ - $\frac{1}{20}$
3 . D = $\frac{9}{20}$
D = $\frac{9}{20}$ : 3
D = $\frac{3}{20}$