Đáp án:
`f(log(log3))=2015`
Giải thích các bước giải:
Ta có: `f(log(log3))=f(log(1/(log_3 10)))=f(-log(log_3 10))`
`=asin(-log(log_3 10))+b\root{3}{-log(log_3 10)}+2016`
`=-(asin(log(log_3 10))+b\root{3}{log(log_3 10)}+2016)+4032`
`=-f(log(log_3 10))+4032=-2017+4032=2015`
Vậy `f(log(log3))=2015`