Giúp mình câu này với: Cho x,y,z>0 và x+y+z=1. Tìm GTNN(min) của \(P=\frac{9}{1-\left(xy+yz+zx\right)}+\frac{1}{4xyz}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left [\frac{9}{1-(xy+yz+xz)}+\frac{1}{4xyz}\right]\left [1-(xy+yz+xz)+9xyz\right ]\geq (3+\frac{3}{2})^2=\frac{81}{4}\)
\(\Rightarrow P\geq \frac{81}{4[1-(xy+yz+xz)+9xyz]}\) $(1)$
Áp dụng BĐT Am-Gm: \(xy+yz+xz=(x+y+z)(xy+yz+xz)\geq 9xyz\)
\(\Rightarrow 1-(xy+yz+xz)+9xyz\leq 1\) $(2)$
Từ \((1),(2)\Rightarrow P\geq \frac{81}{4}\)
Vậy \(P_{\min}=\frac{81}{4}\Leftrightarrow (x,y,z)=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)\)
giúp mk vs ạk..
Cho tam giác ABC, có ma= c. CMR: sinA=2sin(B-C)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông tại B, BC = 2BA. Gọi E,F lần lượt là trung điểm của BC,AC. Trên tia đối của tia FE lấy điểm M sao cho FM = 3FE. Biết điểm M (5;-1), đường thẳng AC có phương trình 2x + y - 3 = 0, điểm A có hoành độ là số nguyên. Xác định tọa độ các đỉnh của tam giác ABC.
giúp em làm bài toán này với
cho 3 số a,b,c >0 thỏa mãn a+b+c=3 Cmr a/(1+b2) +b/(1+c2) +c/(1+a2)>= 3/2
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .
Tìm m để phương trình \(\left|x^2-1\right|=m^4-m^2+1\) có bốn nghiệm phân biệt.
Giải hệ phương trình \(\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5\\x-y+\sqrt{2x+y}=1\end{cases}\)
Giải phương trình \(x^2-7x+8=2\sqrt{x}\)
tìm tọa độ các giao điểm của 2 đường tròn sau đây :
(C) : x2 + y2 + 2x + 2y - 1 = 0
(C') : x2 + y2 - 2x + 2y - 7 = 0
giải và biện luận phương trình : m ( mx - 1 ) = x + 1
ba cạnh của một tam giác vuông có độ dài là 3 số tự nhiên liên tiếp . Tìm 3 số đó
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến