giúp em làm bài toán này với
cho 3 số a,b,c >0 thỏa mãn a+b+c=3 Cmr a/(1+b2) +b/(1+c2) +c/(1+a2)>= 3/2
Lời giải:
Đặt \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)
Ta có \(A=(a-\frac{ab^2}{1+b^2})+(b-\frac{bc^2}{1+c^2})+(c-\frac{ca^2}{1+a^2})=3-\left ( \frac{ab^2}{1+b^2}+\frac{bc^2}{1+c^2}+\frac{ca^2}{1+a^2} \right )\)
Áp dụng bất đẳng thức AM-GM:
\(A\geq 3-\left ( \frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{3a} \right )=3-\frac{1}{2}(ab+bc+ac)\)
Cũng theo AM-GM
\(9=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 3\)
\(\Rightarrow A\geq 3-\frac{3}{2}=\frac{3}{2}\)
Dấu $=$ xảy ra khi \(a=b=c=1\)
a) viết phương trình đường tròn tiếp xúc với 2 trục tọa độ và đi qua điểm (2,1) ; b) viết phương trình đường tròn đi qua 2 điểm (1,1) , (1,4) và tiếp xúc với trục Ox .
Tìm m để phương trình \(\left|x^2-1\right|=m^4-m^2+1\) có bốn nghiệm phân biệt.
Giải hệ phương trình \(\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5\\x-y+\sqrt{2x+y}=1\end{cases}\)
Giải phương trình \(x^2-7x+8=2\sqrt{x}\)
tìm tọa độ các giao điểm của 2 đường tròn sau đây :
(C) : x2 + y2 + 2x + 2y - 1 = 0
(C') : x2 + y2 - 2x + 2y - 7 = 0
giải và biện luận phương trình : m ( mx - 1 ) = x + 1
ba cạnh của một tam giác vuông có độ dài là 3 số tự nhiên liên tiếp . Tìm 3 số đó
Hãy viết phương trình hàm số bậc nhất đường thẳng (d) : y = ax + b
a) Đi qua 2 điểm A(4; 3) và B(2; -1)
b) Đi qua điểm A(1; -1) và song trục ox.
cho hàm số bậc nhất : y = f(x) = (m -1)x +2m +1 (dm).
a) chứng minh rằng a2 + ab + b2 >= 0 với mọi số thực a , b ; b) chứng minh rằng với 2 số thực a , b tùy ý , ta có a4 + b4 >= a3b + ab3
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến