Đáp án:
Chọn C.
Giải thích các bước giải:
\[\begin{array}{l}
\left( {1 - \sin x} \right){\sin ^2}x - \left( {1 + \cos x} \right){\cos ^2}x = 0\\
\Leftrightarrow {\sin ^2}x - {\sin ^3}x - {\cos ^2}x - {\cos ^3}x = 0\\
\Leftrightarrow \left( {{{\sin }^2}x - {{\cos }^2}x} \right) - \left( {{{\sin }^3}x + {{\cos }^3}x} \right) = 0\\
\Leftrightarrow \left( {\sin x - \cos x} \right)\left( {\sin x + \cos x} \right) - \left( {\sin x + \cos x} \right)\left( {{{\sin }^2}x - \sin x\cos x + {{\cos }^2}x} \right) = 0\\
\Leftrightarrow \left( {\sin x + \cos x} \right)\left( {\sin x - \cos x - 1 + \sin x\cos x} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x + \cos x = 0\,\,\,\,\,\left( 1 \right)\\
\sin x - \cos x + \sin x\cos x - 1 = 0\,\,\,\,\,\left( 2 \right)
\end{array} \right.\\
\left( 1 \right) \Leftrightarrow \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right) = 0 \Leftrightarrow x + \frac{\pi }{4} = k\pi \Leftrightarrow x = - \frac{\pi }{4} + k\pi \,\,\,\,\left( {k \in Z} \right).\\
\Rightarrow y = - \frac{\pi }{4}.\\
\left( 2 \right) \Leftrightarrow \sin x - \cos x + \sin x\cos x - 1 = 0\\
Dat\,\,\,t = \sin x - \cos x\,\,\left( { - \sqrt 2 \le t \le \sqrt 2 } \right)\\
\Rightarrow {t^2} = 1 - 2\sin x\cos x \Rightarrow \sin x\cos x = \frac{{1 - {t^2}}}{2}\\
\Rightarrow \left( 2 \right) \Leftrightarrow t + \frac{{1 - {t^2}}}{2} - 1 = 0\\
\Leftrightarrow 2t + 1 - {t^2} - 2 = 0\\
\Leftrightarrow {t^2} - 2t + 1 = 0\\
\Leftrightarrow {\left( {t + 1} \right)^2} = 0\\
\Leftrightarrow t = - 1\\
\Leftrightarrow \sin x - \cos x = - 1\\
\Leftrightarrow \sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = - 1\\
\Leftrightarrow \sin \left( {x - \frac{\pi }{4}} \right) = - \frac{1}{{\sqrt 2 }}\\
\Leftrightarrow \left[ \begin{array}{l}
x - \frac{\pi }{4} = - \frac{\pi }{4} + k2\pi \\
x - \frac{\pi }{4} = \frac{{5\pi }}{4} + k2\pi
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = k2\pi \\
x = \frac{{3\pi }}{2} + k2\pi
\end{array} \right.\,\,\left( {k \in Z} \right)\\
\Rightarrow \left\{ \begin{array}{l}
\alpha = 0\\
\beta = \frac{{3\pi }}{2}
\end{array} \right. \Rightarrow \alpha + \beta + y = 0 + \frac{{3\pi }}{2} - \frac{\pi }{4} = \frac{{5\pi }}{4}.
\end{array}\]