Giải thích các bước giải:
$\begin{cases}\dfrac{3}{5x}+\dfrac{1}{y}=\dfrac{1}{10}\\\dfrac{3}{4x}+\dfrac{3}{4y} =\dfrac{1}{12}\end{cases}$
$\to \begin{cases}\dfrac{3}{5x}+\dfrac{1}{y}=\dfrac{1}{10}\\\dfrac{1}{x}+\dfrac{1}{y} =\dfrac{1}{9}\end{cases}$
$\to \begin{cases}\dfrac{3}{5x}+\dfrac{1}{y}-(\dfrac{1}{x}+\dfrac{1}{y} )=\dfrac{1}{10}-\dfrac{1}{9}\\\dfrac{1}{x}+\dfrac{1}{y} =\dfrac{1}{9}\end{cases}$
$\to \begin{cases}\dfrac{-2}{5x}=-\dfrac{1}{90}\\\dfrac{1}{y} =\dfrac{1}{9}-\dfrac{1}{x}\end{cases}$
$\to \begin{cases}x=36\\\dfrac{1}{y} =\dfrac{1}{9}-\dfrac{1}{36}=\dfrac{1}{12}\end{cases}$
$\to \begin{cases}x=36\\y=12\end{cases}$