Đáp án:
$\begin{array}{l}
Dkxd:x > 0;x \ne 1\\
1)\\
B = \left( {1 - \dfrac{{4\sqrt x }}{{x - 1}} + \dfrac{1}{{\sqrt x - 1}}} \right):\dfrac{{x - 2\sqrt x }}{{x - 1}}\\
= \dfrac{{x - 1 - 4\sqrt x + \sqrt x + 1}}{{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}.\dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x - 2} \right)}}\\
= \dfrac{{x - 3\sqrt x }}{{\sqrt x \left( {\sqrt x - 2} \right)}}\\
= \dfrac{{\sqrt x - 3}}{{\sqrt x - 2}}\\
2)x = 11 - 6\sqrt 2 \left( {tmdk} \right)\\
= 9 - 2.3.\sqrt 2 + 2\\
= {\left( {3 - \sqrt 2 } \right)^2}\\
\Leftrightarrow \sqrt x = 3 - \sqrt 2 \\
\Leftrightarrow B = \dfrac{{\sqrt x - 3}}{{\sqrt x - 2}} = \dfrac{{3 - \sqrt 2 - 3}}{{3 - \sqrt 2 - 2}}\\
= \dfrac{{ - \sqrt 2 }}{{1 - \sqrt 2 }} = \dfrac{{\sqrt 2 \left( {\sqrt 2 + 1} \right)}}{{2 - 1}} = 2 + \sqrt 2 \\
3)B = \dfrac{{\sqrt x - 3}}{{\sqrt x - 2}} = \dfrac{{\sqrt x - 2 - 1}}{{\sqrt x - 2}} = 1 - \dfrac{1}{{\sqrt x - 2}}\\
B \in Z\\
\Leftrightarrow \dfrac{1}{{\sqrt x - 2}} \in Z\\
\Leftrightarrow \left( {\sqrt x - 2} \right) \in \left\{ { - 1;1} \right\}\\
\Leftrightarrow \sqrt x \in \left\{ {1;3} \right\}\\
\Leftrightarrow x \in \left\{ {1;9} \right\}\left( {do:x \ne 1} \right)\\
\Leftrightarrow x = 9\\
Vậy\,x = 9\\
4)B = - 2\\
\Leftrightarrow \dfrac{{\sqrt x - 3}}{{\sqrt x - 2}} = - 2\\
\Leftrightarrow \sqrt x - 3 = - 2\sqrt x + 4\\
\Leftrightarrow 3\sqrt x = 7\\
\Leftrightarrow \sqrt x = \dfrac{7}{3}\\
\Leftrightarrow x = \dfrac{{49}}{9}\left( {tmdk} \right)\\
Vậy\,x = \dfrac{{49}}{9}\\
5)B < 0\\
\Leftrightarrow \dfrac{{\sqrt x - 3}}{{\sqrt x - 2}} < 0\\
\Leftrightarrow 2 < \sqrt x < 3\\
\Leftrightarrow 4 < x < 9\\
Vậy\,4 < x < 9\\
6)B < - 2\\
\Leftrightarrow \dfrac{{\sqrt x - 3}}{{\sqrt x - 2}} < - 2\\
\Leftrightarrow \dfrac{{\sqrt x - 3}}{{\sqrt x - 2}} + 2 < 0\\
\Leftrightarrow \dfrac{{\sqrt x - 3 + 2\sqrt x - 4}}{{\sqrt x - 2}} < 0\\
\Leftrightarrow \dfrac{{3\sqrt x - 7}}{{\sqrt x - 2}} < 0\\
\Leftrightarrow 2 < \sqrt x < \dfrac{7}{3}\\
\Leftrightarrow 4 < x < \dfrac{{49}}{9}\\
Vậy\,4 < x < \dfrac{{49}}{9}\\
7)B > \sqrt x - 1\\
\Leftrightarrow \dfrac{{\sqrt x - 3}}{{\sqrt x - 2}} > \sqrt x - 1\\
\Leftrightarrow \dfrac{{\sqrt x - 3}}{{\sqrt x - 2}} - \sqrt x + 1 > 0\\
\Leftrightarrow \dfrac{{\sqrt x - 3 - x + 3\sqrt x - 2}}{{\sqrt x - 2}} > 0\\
\Leftrightarrow \dfrac{{ - x + 4\sqrt x - 5}}{{\sqrt x - 2}} > 0\\
\Leftrightarrow \dfrac{{x - 4\sqrt x + 5}}{{\sqrt x - 2}} > 0\\
\Leftrightarrow \sqrt x - 2 > 0\\
\Leftrightarrow \sqrt x > 2\\
\Leftrightarrow x > 4\\
Vậy\,x > 4
\end{array}$