(Hình trong ảnh nha bạn)
bài $1$ Vì $MN // AB$ gt
Mà $AB//CD $ (vì tứ giác $ABCD$ là hình thang)
=> $AB//MN//CD$
Áp dụng định lý $Ta -Lét$ trong hình thang $ABCD $ ta có
=> $\frac{AM}{AD}= \frac{BN}{BC}$
=> $\frac{AM}{MD}= \frac{BN}{NC}$
=> $\frac{MD}{AD}= \frac{NC}{BC}$
=> $đpcm$
Bài $2$ (hình trong ảnh nha bạn)
Theo đề bài ta có
$MD= 2MO$ => $\frac{MO}{MO+MD} = \frac{MO}{OD} = \frac{1}{2+1}=\frac{1}{3}$
Vì $M,N$ đều là trung điểm của $2$ đường chéo trong hình thang cân $ABCD$
=> $\frac{MO}{OD} = \frac{NO}{OC} = \frac{1}{3}$
Theo định lý $Ta -Lét $ đảo => $MN//DC$
Áp dụng hệ quả của định lý $Ta -Lét$ ta có
$\frac{MN}{DC}= \frac{OM}{OD} = \frac{1}{3} $
Mà $DC= 5,6 cm$ $(gt)$
Ta có $\frac{MN}{5,6}= \frac{1}{3} $
=> $MN= \frac{5,6.1}{3} = 1,86 cm$ (làm tròn đến số thập phân thứ $2$)