D = $\frac{2}{\sqrt{5} + 1}$ + $\sqrt{\frac{2}{3 - \sqrt{5}}}$
= $\frac{2}{\sqrt{5} + 1}$ + $\sqrt{\frac{2.2}{2.(3 - \sqrt{5})}}$
= $\frac{2}{\sqrt{5} + 1}$ + $\sqrt{\frac{4}{6 - 2\sqrt{5}}}$
= $\frac{2}{\sqrt{5} + 1}$ + $\sqrt{\frac{4}{5 - 2\sqrt{5} + 1}}$
= $\frac{2}{\sqrt{5} + 1}$ + $\sqrt{\frac{4}{(\sqrt{5} - 1)²}}$
= $\frac{2}{\sqrt{5} + 1}$ + $\frac{2}{|\sqrt{5} - 1|}$
= $\frac{2}{\sqrt{5} + 1}$ + $\frac{2}{\sqrt{5} - 1}$
= $\frac{2(\sqrt{5} - 1) + 2(\sqrt{5} + 1)}{(\sqrt{5} - 1)(\sqrt{5} + 1}$
= $\frac{2\sqrt{5} - 2 + 2\sqrt{5} + 2}{5 - 1}$
= $\frac{4\sqrt{5}}{4}$
= $\sqrt{5}$
E = (2 - $\sqrt{3}$)(2 + $\sqrt{3}$)
= 4 - 3
= 1
M = (1 + $\sqrt{5}$ - $\sqrt{6}$)(1 + $\sqrt{5}$ + $\sqrt{6}$)
= [(1 + $\sqrt{5}$) - $\sqrt{6}$][(1 + $\sqrt{5}$) + $\sqrt{6}$]
= (1 + $\sqrt{5}$)² - ($\sqrt{6}$)²
= 1 + 2$\sqrt{5}$ + 5 - 6
= 2$\sqrt{5}$