Đáp án:
c. \(Max = \dfrac{1}{4}\)
Giải thích các bước giải:
\(\begin{array}{l}
a.A = \left[ {\dfrac{{\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} - \dfrac{{\sqrt x + 2}}{{{{\left( {\sqrt x + 1} \right)}^2}}}} \right].\dfrac{{{{\left( {1 - x} \right)}^2}}}{2}\\
= \left[ {\dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 1} \right) - \left( {\sqrt x + 2} \right)\left( {\sqrt x - 1} \right)}}{{\left( {x - 1} \right)\left( {\sqrt x + 1} \right)}}} \right].\dfrac{{{{\left( {x - 1} \right)}^2}}}{2}\\
= \dfrac{{x - \sqrt x - 2 - x - \sqrt x + 2}}{{\left( {x - 1} \right)\left( {\sqrt x + 1} \right)}}.\dfrac{{{{\left( {x - 1} \right)}^2}}}{2}\\
= \dfrac{{ - 2\sqrt x }}{{\left( {x - 1} \right)\left( {\sqrt x + 1} \right)}}.\dfrac{{{{\left( {x - 1} \right)}^2}}}{2}\\
= \dfrac{{ - \sqrt x \left( {x - 1} \right)}}{{\sqrt x + 1}}\\
= \dfrac{{ - \sqrt x \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)}}{{\sqrt x + 1}}\\
= - \sqrt x \left( {\sqrt x - 1} \right)\\
= - x + \sqrt x \\
b.A > 0\\
\to - x + \sqrt x > 0\\
\to - \sqrt x \left( {\sqrt x - 1} \right) > 0\\
\to \sqrt x \left( {\sqrt x - 1} \right) < 0\\
\to \sqrt x - 1 < 0\left( {do:\sqrt x \ge 0\forall x \ge 0} \right)\\
\to x < 1\\
\to 0 \le x < 1\\
c.A = - x + \sqrt x = - \left( {x - \sqrt x } \right)\\
= - \left( {x - 2.\sqrt x .\dfrac{1}{2} + \dfrac{1}{4} - \dfrac{1}{4}} \right)\\
= - {\left( {\sqrt x - \dfrac{1}{2}} \right)^2} + \dfrac{1}{4}\\
Do:{\left( {\sqrt x - \dfrac{1}{2}} \right)^2} \ge 0\forall x \ge 0\\
\to - {\left( {\sqrt x - \dfrac{1}{2}} \right)^2} \le 0\\
\to - {\left( {\sqrt x - \dfrac{1}{2}} \right)^2} + \dfrac{1}{4} \le \dfrac{1}{4}\\
\to Max = \dfrac{1}{4}\\
\Leftrightarrow \sqrt x - \dfrac{1}{2} = 0\\
\Leftrightarrow x = \dfrac{1}{4}
\end{array}\)