Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
DKXD:\,\,\,\left\{ \begin{array}{l}
x \ge 0\\
x \ne 1\\
x \ne 9
\end{array} \right.\\
B = \dfrac{{\sqrt x - 2}}{{\sqrt x - 1}} - \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} + \dfrac{{6\sqrt x - 8}}{{x - 4\sqrt x + 3}}\\
= \dfrac{{\sqrt x - 2}}{{\sqrt x - 1}} - \dfrac{{\sqrt x + 1}}{{\sqrt x - 3}} + \dfrac{{6\sqrt x - 8}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right) - \left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right) + 6\sqrt x - 8}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\left( {x - 5\sqrt x + 6} \right) - \left( {x - 1} \right) + 6\sqrt x - 8}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{x - 5\sqrt x + 6 - x + 1 + 6\sqrt x - 8}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\sqrt x - 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{1}{{\sqrt x - 3}}\\
b,\\
B.\left( {\sqrt x - 7} \right) < 2\\
\Leftrightarrow \dfrac{{\sqrt x - 7}}{{\sqrt x - 3}} < 2\\
\Leftrightarrow \dfrac{{\sqrt x - 7}}{{\sqrt x - 3}} - 2 < 0\\
\Leftrightarrow \dfrac{{\left( {\sqrt x - 7} \right) - 2.\left( {\sqrt x - 3} \right)}}{{\sqrt x - 3}} < 0\\
\Leftrightarrow \dfrac{{\sqrt x - 7 - 2\sqrt x + 6}}{{\sqrt x - 3}} < 0\\
\Leftrightarrow \dfrac{{ - \sqrt x - 1}}{{\sqrt x - 3}} < 0\\
- \sqrt x - 1 = - \left( {\sqrt x + 1} \right) < 0,\,\,\,\forall x \ge 0,x{\kern 1pt} \ne 1,x \ne 9\\
\Rightarrow \sqrt x - 3 > 0\\
\Leftrightarrow \sqrt x > 3\\
\Leftrightarrow x > 9
\end{array}\)