Đáp án:
1) \(\dfrac{{1 - 2\sqrt {3x} + 3x}}{{\sqrt {3x} - 2}}\)
2) x=3
Giải thích các bước giải:
\(\begin{array}{l}
1)DK:x \ge 0;x \ne \dfrac{4}{3}\\
A = \left[ {\dfrac{{6x + 4}}{{\left( {\sqrt {3x} - 2} \right)\left( {3x + 2\sqrt {3x} + 4} \right)}} - \dfrac{{\sqrt {3x} }}{{3x + 2\sqrt {3x} + 4}}} \right].\left[ {\dfrac{{\left( {1 + \sqrt {3x} } \right)\left( {1 - \sqrt {3x} + 3x} \right)}}{{1 + \sqrt {3x} }} - \sqrt {3x} } \right]\\
= \dfrac{{6x + 4 - \sqrt {3x} \left( {\sqrt {3x} - 2} \right)}}{{\left( {\sqrt {3x} - 2} \right)\left( {3x + 2\sqrt {3x} + 4} \right)}}.\left( {1 - \sqrt {3x} + 3x - \sqrt {3x} } \right)\\
= \dfrac{{6x + 4 - 3x + 2\sqrt {3x} }}{{\left( {\sqrt {3x} - 2} \right)\left( {3x + 2\sqrt {3x} + 4} \right)}}.\left( {1 - 2\sqrt {3x} + 3x} \right)\\
= \dfrac{{3x + 2\sqrt {3x} + 4}}{{\left( {\sqrt {3x} - 2} \right)\left( {3x + 2\sqrt {3x} + 4} \right)}}.\left( {1 - 2\sqrt {3x} + 3x} \right)\\
= \dfrac{{1 - 2\sqrt {3x} + 3x}}{{\sqrt {3x} - 2}}\\
2)A = \dfrac{{1 - 2\sqrt {3x} + 3x}}{{\sqrt {3x} - 2}}\\
= \dfrac{{3x - 4\sqrt {3x} + 4 + 2\sqrt {3x} - 3}}{{\sqrt {3x} - 2}}\\
= \dfrac{{{{\left( {\sqrt {3x} - 2} \right)}^2} + 2\left( {\sqrt {3x} - 2} \right) + 1}}{{\sqrt {3x} - 2}}\\
= \left( {\sqrt {3x} - 2} \right) + 2 + \dfrac{1}{{\sqrt {3x} - 2}}\\
A \in Z \to \dfrac{1}{{\sqrt {3x} - 2}} \in Z\\
\to \sqrt {3x} - 2 \in U\left( 1 \right)\\
\to \left[ \begin{array}{l}
\sqrt {3x} - 2 = 1\\
\sqrt {3x} - 2 = - 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
\sqrt {3x} = 3\\
\sqrt {3x} = 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 3\\
x = \dfrac{1}{3}\left( l \right)
\end{array} \right.
\end{array}\)