Đáp án:
$\begin{array}{l}
B1)\\
a)Dkxd:x \ge 0;x \ne 9\\
M = \left( {\dfrac{{x + \sqrt x + 10}}{{x - 9}} - \dfrac{1}{{\sqrt x - 3}}} \right):\dfrac{1}{{\sqrt x - 3}}\\
= \dfrac{{x + \sqrt x + 10 - \sqrt x - 3}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}.\left( {\sqrt x - 3} \right)\\
= \dfrac{{x + 7}}{{\sqrt x + 3}}\\
b)x = 25\left( {tmdk} \right)\\
\Rightarrow \sqrt x = 5\\
\Rightarrow M = \dfrac{{x + 7}}{{\sqrt x + 3}} = \dfrac{{25 + 7}}{{5 + 3}} = 4\\
c)x \ge 0;x \ne 9\\
M < \sqrt x + 1\\
\Rightarrow \dfrac{{x + 7}}{{\sqrt x + 3}} < \sqrt x + 1\\
\Rightarrow x + 7 < \left( {\sqrt x + 1} \right)\left( {\sqrt x + 3} \right)\\
\Rightarrow x + 7 < x + 4\sqrt x + 3\\
\Rightarrow 4\sqrt x > 4\\
\Rightarrow \sqrt x > 1\\
\Rightarrow x > 1\\
Vay\,x > 1;x \ne 9\\
B2)\\
a)Dkxd:x \ge 0;x \ne 9\\
x = 1\\
\Rightarrow \sqrt x = 1\\
\Rightarrow B = \dfrac{1}{{\sqrt x - 3}} = \dfrac{1}{{1 - 3}} = - \dfrac{1}{2}\\
b)S = A - B\\
= \dfrac{{x + 3}}{{x - 9}} + \dfrac{2}{{\sqrt x + 3}} - \dfrac{1}{{\sqrt x - 3}}\\
= \dfrac{{x + 3 + 2\left( {\sqrt x - 3} \right) - \left( {\sqrt x + 3} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{x + 3 + 2\sqrt x - 6 - \sqrt x - 3}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{x + \sqrt x - 6}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\sqrt x - 2}}{{\sqrt x - 3}}\\
c)S = \dfrac{{\sqrt x + 1}}{{\sqrt x + 2}} = \dfrac{{\sqrt x - 2}}{{\sqrt x - 3}}\\
\Rightarrow \left( {\sqrt x + 1} \right)\left( {\sqrt x - 3} \right) = \left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)\\
\Rightarrow x - 2\sqrt x - 3 = x - 4\\
\Rightarrow 2\sqrt x = 1\\
\Rightarrow \sqrt x = \dfrac{1}{2}\\
\Rightarrow x = \dfrac{1}{4}\left( {tmdk} \right)
\end{array}$