`ĐKXĐ: x>=0; x\ne1`
`(x-5)/(x+2\sqrt{x}-3)+1/(\sqrt{x}+3)-2/(1-\sqrt{x})`
`=(x-5)/((\sqrt{x}-1)(\sqrt{x}+3))+1/(\sqrt{x}+3)+2/(\sqrt{x}-1)`
`=((x-5)+(\sqrt{x}-1)+2(\sqrt{x}+3))/((\sqrt{x}-1)(\sqrt{x}+3))`
`=(x-5+\sqrt{x}-1+2\sqrt{x}+6)/((\sqrt{x}-1)(\sqrt{x}+3))`
`=(x+3\sqrt{x})/((\sqrt{x}-1)(\sqrt{x}+3))`
`=(\sqrt{x}(\sqrt{x}+3))/((\sqrt{x}-1)(\sqrt{x}+3))`
`=\sqrt{x}/(\sqrt{x}-1)`
Vậy với `x>=0; x\ne1` thì `(x-5)/(x+2\sqrt{x}-3)+1/(\sqrt{x}+3)-2/(1-\sqrt{x})=\sqrt{x}/(\sqrt{x}-1)`