Đáp án:
\(\begin{array}{l}
B5:\\
a) - \dfrac{{\sqrt x }}{{\sqrt x + 3}}\\
b)dpcm\\
c)x \ge 0;x \ne 25;x \ne 9\\
d)x = 0\\
B6:\\
a)a > 0;a \ne \left\{ {1;2} \right\}\\
b)\dfrac{{\sqrt a - 2}}{{3\sqrt a }}\\
c)a > 16\\
d)MinB = - \dfrac{5}{3}
\end{array}\)
Giải thích các bước giải:
\(\begin{array}{l}
B5:\\
a)A = \dfrac{{\sqrt x \left( {\sqrt x - 5} \right)}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}:\dfrac{{25 - x - \left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right) + \left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{{\sqrt x \left( {\sqrt x - 5} \right)}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}.\dfrac{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}{{25 - x - x + 9 + x - 25}}\\
= \dfrac{{\sqrt x \left( {\sqrt x - 5} \right)}}{{\left( {\sqrt x - 5} \right)\left( {\sqrt x + 5} \right)}}.\dfrac{{\left( {\sqrt x + 5} \right)\left( {\sqrt x - 3} \right)}}{{ - x + 9}}\\
= \dfrac{{\sqrt x \left( {\sqrt x - 3} \right)}}{{ - x + 9}} = - \dfrac{{\sqrt x }}{{\sqrt x + 3}}\\
b)A < 2\\
\to \dfrac{{\sqrt x }}{{\sqrt x + 3}} < 2\\
\to \dfrac{{\sqrt x - 2\sqrt x - 6}}{{\sqrt x + 3}} < 0\\
\to \dfrac{{ - \sqrt x - 6}}{{\sqrt x + 3}} < 0\\
\to \dfrac{{\sqrt x + 6}}{{\sqrt x + 3}} > 0\left( {ld} \right)\forall x \ge 0\\
c)A < 1\\
\to - \dfrac{{\sqrt x }}{{\sqrt x + 3}} < 1\\
\to \dfrac{{ - \sqrt x - \sqrt x - 3}}{{\sqrt x + 3}} < 0\\
\to \dfrac{{ - 2\sqrt x - 3}}{{\sqrt x + 3}} < 0\\
\to \dfrac{{2\sqrt x + 3}}{{\sqrt x + 3}} > 0\left( {ld} \right)\forall x \ge 0\\
\to x \ge 0;x \ne 25;x \ne 9\\
d)A = - \dfrac{{\sqrt x }}{{\sqrt x + 3}} = - \dfrac{{\sqrt x + 3 - 3}}{{\sqrt x + 3}}\\
= - 1 + \dfrac{3}{{\sqrt x + 3}}\\
A \in Z \to \dfrac{3}{{\sqrt x + 3}} \in Z\\
\to \sqrt x + 3 \in U\left( 3 \right)\\
\to \sqrt x + 3 = 3\\
\to x = 0\\
B6:\\
a)DK:a > 0;a \ne \left\{ {1;2} \right\}\\
b)B = \dfrac{{\sqrt a - \sqrt a + 1}}{{\sqrt a \left( {\sqrt a - 1} \right)}}:\dfrac{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right) - \left( {\sqrt a + 2} \right)\left( {\sqrt a - 2} \right)}}{{\left( {\sqrt a - 2} \right)\left( {\sqrt a - 1} \right)}}\\
= \dfrac{1}{{\sqrt a \left( {\sqrt a - 1} \right)}}.\dfrac{{\left( {\sqrt a - 2} \right)\left( {\sqrt a - 1} \right)}}{{a - 1 - a + 4}}\\
= \dfrac{1}{{\sqrt a \left( {\sqrt a - 1} \right)}}.\dfrac{{\left( {\sqrt a - 2} \right)\left( {\sqrt a - 1} \right)}}{3}\\
= \dfrac{{\sqrt a - 2}}{{3\sqrt a }}\\
c)B > \dfrac{1}{6}\\
\to \dfrac{{\sqrt a - 2}}{{3\sqrt a }} > \dfrac{1}{6}\\
\to \dfrac{{6\sqrt a - 12 - 3\sqrt a }}{{18\sqrt a }} > 0\\
\to 3\sqrt a - 12 > 0\\
\to \sqrt a > 4\\
\to a > 16\\
d)B = \dfrac{{\sqrt a - 2}}{{3\sqrt a }} = \dfrac{1}{3} - \dfrac{2}{{3\sqrt a }}\\
B\min \Leftrightarrow \dfrac{2}{{3\sqrt a }}\max \\
\Leftrightarrow 3\sqrt a \min \\
\Leftrightarrow 3\sqrt a = 1\\
\to a = \dfrac{1}{9}\\
\to MinB = - \dfrac{5}{3}
\end{array}\)