a.
`4x(x + 1) = 8(x + 1)`
`⇔4x(x + 1) - 8(x + 1) = 0`
`⇔(x + 1)(4x - 8) = 0`
`⇔4(x + 1)(x - 2) = 0`
`⇔`\(\left[ \begin{array}{l}x+1=0\\x-2=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=-1\\x=2\end{array} \right.\)
Vậy `S = {-1; 2}`
b.
`x(x - 1) - 2(1 - x) = 0`
`⇔x(x - 1) + 2(x - 1) = 0`
`⇔(x - 1)(x + 2) = 0`
`⇔`\(\left[ \begin{array}{l}x-1=0\\x+2=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=1\\x=-2\end{array} \right.\)
Vậy `S = {-2; 1}`
c.
`2x(x - 2) - (2 - x)^2 = 0`
`⇔-2x(2 - x) - (2 - x)^2 = 0`
`⇔(2 - x)(-2x - 2 + x) = 0`
`⇔(2 - x)(-x - 2) = 0`
`⇔`\(\left[ \begin{array}{l}2-x=0\\-x-2=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=2\\x=-2\end{array} \right.\)
Vậy `S = {-2; 2}`
d.
`(x - 3)^3 + (3 - x) = 0`
`⇔(x - 3)^3 - (x - 3) = 0`
`⇔(x - 3)[(x - 3)^2 - 1] = 0`
`⇔(x - 3)(x - 3 - 1)(x - 3 + 1) = 0`
`⇔(x - 3)(x - 4)(x - 2) = 0`
`⇔`\(\left[ \begin{array}{l}x-3=0\\x-4=0\\x-2=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=3\\x=4\\x=2\end{array} \right.\)
Vậy `S = {2; 3; 4}`
e.
`5x(x - 2) - (2 - x) = 0`
`⇔5x(x - 2) + (x - 2) = 0`
`⇔(x - 2)(5x -1 ) = 0`
`⇔`\(\left[ \begin{array}{l}x-2=0\\5x-1=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=2\\x=\dfrac{1}{5}\end{array} \right.\)
Vậy `S = {1/5; 2}`
g.
`5x(x - 2000) - x + 2000 = 0`
`⇔5x(x - 2000) - (x - 2000) = 0`
`⇔(x - 2000)(5x - 1) = 0`
`⇔`\(\left[ \begin{array}{l}x-2000=0\\5x-1=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=2000\\x=\dfrac{1}{5}\end{array} \right.\)
Vậy `S = {1/5; 2000}`
h.
`x^2 - 4x = 0`
`⇔x(x - 4) = 0`
`⇔`\(\left[ \begin{array}{l}x=0\\x-4=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=0\\x=4\end{array} \right.\)
Vậy `S = {0; 4}`
k.
`(1 - x)^2 - 1 + x = 0`
`⇔(1 - x)^2 - (1 - x) = 0`
`⇔(1 - x)(1 - x - 1) = 0`
`⇔-x(1 - x) = 0`
`⇔`\(\left[ \begin{array}{l}-x=0\\1-x=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=0\\x=1\end{array} \right.\)
Vậy `S = {0; 1}`
m.
`x + 6x^2 = 0`
`⇔x(1 + 6x) = 0`
`⇔`\(\left[ \begin{array}{l}x=0\\1+6x=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=0\\x=\dfrac{-1}{6}\end{array} \right.\)
Vậy `S = {-1/6; 0}`
n.
`(x + 1) = (x + 1)^2`
`⇔(x + 1) - (x + 1)^2 = 0`
`⇔(x + 1)(1 - x - 1) = 0`
`⇔-x(x + 1) = 0`
`⇔`\(\left[ \begin{array}{l}-x=0\\x+1=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.\)
Vậy `S = {-1; 0}`