Đáp án:
Giải thích các bước giải:
b) TH1: x-1 lớn hơn hoặc bằng 0 => x lớn hơn hoặc bằng 1
| x - 1| = x - 1
=> 5( x + 1 ) - ( x -1 ) = 3x - 4
<=> 5x+5-x+1=3x-4
<=> 5x-x-3x= -4-5-1
<=> x = -10 ( ko TMĐK )
TH2 x-1 < 0 => x < 1
| x- 1| = - ( x-1 )
=> 5( x+1)+ ( x -1 ) = 3x-4
<=> 5x+5 +x - 1 = 3x -4
<=> 5x+x-3x = -4-5+1
<=> 3x=-8
<=> x= -8/3 ( TMĐK )
Vậy PT có ngo là S={ -8/3 }
c) TH1: 2x+3<0 => x< -3/2
|x-7|= -( x-7)
|2x+3| = - ( 2x+3)
=> -(x-7) = - ( 2x+3 )
<=> x-7= 2x+3
<=> x-2x=3+7
<=> x= -10 ( TMĐK )
TH2 -3/2 < hoặc = x < 7
| |2x+3|= 2x+3
|x-7|= - ( x-7)
=> -( x-7) = 2x+3
<=> -x+7= 2x+3
<=> -3x= -4
<=> x= 4/3 ( TMđk )
TH3 x > hoặc bằng 7
| 2x+3| = 2x+3
| x-7 | = x-7
=> x-7=2x+3
<=> -x= 10
<=> x= -10 ( ko TMĐK )
Vậy PT có ngo là S = { 4/3 }
d) TH1 3x+5 > hoặc = 0 => x > hoặc bằng -5/3
| 3x+5| = 3x+5
3x+5=3x+5
0x=0 ( với mọi x lớn hơn hoặc bằng -5/3 )
TH2 3x+5 < 0 => x < -5/3
| 3x+5| = -( 3x+5 )
=> -( 3x+5 )= 3x+5
<=> -3x-5= 3x+5
<=> -6x=10
<=> x= -5/3 ( ko TMĐK )
vậy PT có vô số ngiệm khi x lớn hơn hơn hoặc bằng -5/3