$\\$
`e,`
`8 1/4 - x = 3 1/6 + (-9)/10`
`-> 33/4 - x = 19/6 - 9/10`
`-> 33/4 - x=34/15`
`->x=33/4 - 34/15`
`->x=359/60`
Vậy `x=359/60`
$\\$
`f,`
`(x-1)/2022 +(x-2)/2021=(x-3)/2020 + (x-4)/2019`
`-> (x-1)/2022 + (x-2)/2021 - 2 = (x-3)/2020 + (x-4)/2019 - 2`
`-> ( (x-1)/2022 - 1) + ( (x-2)/2021-1) = ( (x-3)/2020 -1) + ( (x-4)/2019-1)`
`-> ( (x-1)/2022-2022/2022) + ( (x-2)/2021-2021/2021) = ( (x-3)/2020-2020/2020) + ( (x-4)/2019-2019/2019)`
`-> (x-2023)/2022 + (x-2023)/2021 = (x-2023)/2020 + (x-2023)/2019`
`-> (x-2023)/2022 + (x-2023)/2021 -(x-2023)/2020 - (x-2023)/2019=0`
`-> (x-2023) (1/2022 + 1/2021 - 1/2020 - 1/2019)=0`
`-> x-2023=0` (Vì `1/2022 + 1/2021 - 1/2020 - 1/2019 \ne 0`)
`->x=0+2023`
`->x=2023`
Vậy `x=2023`