Đáp án:
Dễ mà bạn...=/
Giải thích các bước giải:
a, Xét Δ OBH và Δ BAH, ta có:
BH chung
OH=HA ( vì H là trung điểm)
^OHB=^AHB=90 độ
=> Δ OBH = Δ BAH ( c.g.c)
=>OB=AB ( hai cạch tương ứng)
Chứng minh quá tương tự với ΔOCH và ΔACH => OC=AC
Xét tứ giác BOCA có:
OB=AB=OC=AC ( chứng minh trên)
=> tứ giác BOCA là hình thoi.
b,
Ta có: AB=OA ( do ΔOHB=ΔAHB)
mà OA=AM ( do M là điểm đối xứng với O qua A)
Xét ΔOBM:
ta có: OA=AM=AB
=>ΔOBM ⊥ B => OB⊥BM
Xét BM:
ta có: điểm B ∈ dg tròn tâm O
OB⊥BM
=> BM là tiếp tuyến của dg tròn tâm O
c,
Do OA = √3 cm = AM
=> OH=AH=√3/2 cm
Xét ΔOBM ⊥ B
=> Áp dụng hệ thức lượng:
=> BH²=OH.HM = √3.(√3+√3/2)=(√18+3)/2 cm
=>BH=√[(√18+3)/2] cm = HC
=>BC=BH+HC = √[(√18+3)/2]+√[(√18+3)/2]=2.√[(√18+3)/2] cm
=>BM²=MH.OM => BM = (√6+√3)/2 . 2√3 = √18+3 cm => BM= √(√18+3) cm
Xét Δ HCM ⊥ H:
ta có: CM²=HC²+HM²=>CM=√{[√(√18+3)/2 + (√6+√3)/2]²} cm
bạn tự bấm mày tính hộ mình
chúc bạn học tốt!!!