Giải thích các bước giải:
\(\begin{array}{l}
a,\\
2\sqrt 5 - \sqrt {9 - 4\sqrt 5 } \\
= 2\sqrt 5 - \sqrt {5 - 4\sqrt 5 + 4} \\
= 2\sqrt 5 - \sqrt {5 - 2.\sqrt 5 .2 + {2^2}} \\
= 2\sqrt 5 - \sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} \\
= 2\sqrt 5 - \left| {\sqrt 5 - 2} \right|\\
= 2\sqrt 5 - \left( {\sqrt 5 - 2} \right)\\
= \sqrt 5 + 2\\
b,\\
\left( {\sqrt 3 + \sqrt 2 } \right)\sqrt {5 - 2\sqrt 6 } \\
= \left( {\sqrt 3 + \sqrt 2 } \right).\sqrt {3 - 2.\sqrt 6 + 2} \\
= \left( {\sqrt 3 + \sqrt 2 } \right).\sqrt {3 - 2.\sqrt 3 .\sqrt 2 + 2} \\
= \left( {\sqrt 3 + \sqrt 2 } \right).\sqrt {{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}} \\
= \left( {\sqrt 3 + \sqrt 2 } \right).\left| {\sqrt 3 - \sqrt 2 } \right|\\
= \left( {\sqrt 3 + \sqrt 2 } \right)\left( {\sqrt 3 - \sqrt 2 } \right)\\
= 3 - 2 = 1\\
c,\\
\sqrt {{{\left( {\sqrt 7 - 1} \right)}^2}} - \sqrt {11 + 4\sqrt 7 } \\
= \left| {\sqrt 7 - 1} \right| - \sqrt {7 + 2.\sqrt 7 .2 + 4} \\
= \left( {\sqrt 7 - 1} \right) - \sqrt {{{\left( {\sqrt 7 + 2} \right)}^2}} \\
= \left( {\sqrt 7 - 1} \right) - \left( {\sqrt 7 + 2} \right)\\
= - 3\\
d,\\
\sqrt {{{\left( {\sqrt 3 - 2} \right)}^2}} + \sqrt {4 - 2\sqrt 3 } \\
= \left| {\sqrt 3 - 2} \right| + \sqrt {3 - 2.\sqrt 3 .1 + 1} \\
= \left( {2 - \sqrt 3 } \right) + \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} \\
= \left( {2 - \sqrt 3 } \right) + \left| {\sqrt 3 - 1} \right|\\
= 2 - \sqrt 3 + \sqrt 3 - 1\\
= 1\\
e,\\
\sqrt {3 - 2\sqrt 2 } - \sqrt {{{\left( {\sqrt 2 - 3} \right)}^2}} \\
= \sqrt {2 - 2.\sqrt 2 .1 + 1} - \left| {\sqrt 2 - 3} \right|\\
= \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} - \left( {3 - \sqrt 2 } \right)\\
= \left| {\sqrt 2 - 1} \right| - \left( {3 - \sqrt 2 } \right)\\
= \sqrt 2 - 1 - 3 + \sqrt 2 \\
= 2\sqrt 2 - 4\\
f,\\
\sqrt {8 - 2\sqrt 7 } + \sqrt {16 - 6\sqrt 7 } \\
= \sqrt {7 - 2.\sqrt 7 .1 + 1} + \sqrt {9 - 2.3.\sqrt 7 + 7} \\
= \sqrt {{{\left( {\sqrt 7 - 1} \right)}^2}} + \sqrt {{{\left( {3 - \sqrt 7 } \right)}^2}} \\
= \left| {\sqrt 7 - 1} \right| + \left| {3 - \sqrt 7 } \right|\\
= \sqrt 7 - 1 + 3 - \sqrt 7 \\
= 2\\
g,\\
\sqrt {21 + 12\sqrt 3 } - \sqrt {13 - 4\sqrt 3 } \\
= \sqrt {12 + 2.2\sqrt 3 .3 + 9} - \sqrt {12 - 2.2\sqrt 3 + 1} \\
= \sqrt {{{\left( {2\sqrt 3 } \right)}^2} + 2.2\sqrt 3 .3 + {3^2}} - \sqrt {{{\left( {2\sqrt 3 } \right)}^2} - 2.2\sqrt 3 .1 + {1^2}} \\
= \sqrt {{{\left( {2\sqrt 3 + 3} \right)}^2}} - \sqrt {{{\left( {2\sqrt 3 - 1} \right)}^2}} \\
= \left| {2\sqrt 3 + 3} \right| - \left| {2\sqrt 3 - 1} \right|\\
= 2\sqrt 3 + 3 - \left( {2\sqrt 3 - 1} \right)\\
= 4\\
h,\\
\sqrt {7 - 4\sqrt 3 } + \dfrac{1}{{2 - \sqrt 3 }}\\
= \sqrt {4 - 2.2.\sqrt 3 + 3} + \dfrac{{2 + \sqrt 3 }}{{\left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right)}}\\
= \sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} + \dfrac{{2 + \sqrt 3 }}{{4 - 3}}\\
= \left| {2 - \sqrt 3 } \right| + 2 + \sqrt 3 \\
= 2 - \sqrt 3 + 2 + \sqrt 3 \\
= 4\\
k,\\
\dfrac{{5\left( {\sqrt 6 - 1} \right)}}{{\sqrt 6 + 1}} + \dfrac{{\sqrt 2 - \sqrt 3 }}{{\sqrt 2 + \sqrt 3 }} + \sqrt {3 - 2\sqrt 2 } \\
= \dfrac{{5.{{\left( {\sqrt 6 - 1} \right)}^2}}}{{\left( {\sqrt 6 + 1} \right)\left( {\sqrt 6 - 1} \right)}} + \dfrac{{{{\left( {\sqrt 2 - \sqrt 3 } \right)}^2}}}{{\left( {\sqrt 2 + \sqrt 3 } \right)\left( {\sqrt 2 - \sqrt 3 } \right)}} + \sqrt {2 - 2.\sqrt 2 .1 + 1} \\
= \dfrac{{5.\left( {6 - 2\sqrt 6 + 1} \right)}}{{6 - 1}} + \dfrac{{2 - 2\sqrt 6 + 3}}{{2 - 3}} + \sqrt {{{\left( {\sqrt 2 - 1} \right)}^2}} \\
= \left( {7 - 2\sqrt 6 } \right) - \left( {5 - 2\sqrt 6 } \right) + \left| {\sqrt 2 - 1} \right|\\
= 7 - 2\sqrt 6 - 5 + 2\sqrt 6 + \sqrt 2 - 1\\
= \sqrt 2 + 1\\
m,\\
\sqrt {5 + 2\sqrt 6 } - \sqrt {5 - 2\sqrt 6 } \\
= \sqrt {3 + 2.\sqrt 3 .\sqrt 2 + 2} - \sqrt {3 - 2.\sqrt 3 .\sqrt 2 + 2} \\
= \sqrt {{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2}} - \sqrt {{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}} \\
= \left| {\sqrt 3 + \sqrt 2 } \right| - \left| {\sqrt 3 - \sqrt 2 } \right|\\
= \left( {\sqrt 3 + \sqrt 2 } \right) - \left( {\sqrt 3 - \sqrt 2 } \right)\\
= 2\sqrt 2 \\
n,\\
\sqrt {7 - 2\sqrt {10} } - \sqrt {7 + 2\sqrt {10} } \\
= \sqrt {5 - 2.\sqrt 5 .\sqrt 2 + 2} - \sqrt {5 + 2.\sqrt 5 .\sqrt 2 + 2} \\
= \sqrt {{{\left( {\sqrt 5 - \sqrt 2 } \right)}^2}} - \sqrt {{{\left( {\sqrt 5 + \sqrt 2 } \right)}^2}} \\
= \left| {\sqrt 5 - \sqrt 2 } \right| - \left| {\sqrt 5 + \sqrt 2 } \right|\\
= \left( {\sqrt 5 - \sqrt 2 } \right) - \left( {\sqrt 5 + \sqrt 2 } \right)\\
= - 2\sqrt 2 \\
o,\\
\sqrt {4 - 2\sqrt 3 } + \sqrt {4 + 2\sqrt 3 } \\
= \sqrt {3 - 2.\sqrt 3 .1 + 1} + \sqrt {3 + 2.\sqrt 3 .1 + 1} \\
= \sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} + \sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} \\
= \left| {\sqrt 3 - 1} \right| + \left| {\sqrt 3 + 1} \right|\\
= \left( {\sqrt 3 - 1} \right) + \left( {\sqrt 3 + 1} \right)\\
= 2\sqrt 3 \\
p,\\
\sqrt {24 + 8\sqrt 5 } + \sqrt {9 - 4\sqrt 5 } \\
= \sqrt {20 + 2.2\sqrt 5 .2 + 4} + \sqrt {5 - 2.\sqrt 5 .2 + 4} \\
= \sqrt {{{\left( {2\sqrt 5 } \right)}^2} + 2.2\sqrt 5 .2 + {2^2}} + \sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} \\
= \sqrt {{{\left( {2\sqrt 5 + 2} \right)}^2}} + \left| {\sqrt 5 - 2} \right|\\
= 2\sqrt 5 + 2 + \sqrt 5 - 2\\
= 3\sqrt 5 \\
q,\\
\sqrt {17 - 12\sqrt 2 } + \sqrt {9 + 4\sqrt 2 } \\
= \sqrt {9 - 2.3.2\sqrt 2 + 8} + \sqrt {8 + 2.2\sqrt 2 .1 + 1} \\
= \sqrt {{{\left( {3 - 2\sqrt 2 } \right)}^2}} + \sqrt {{{\left( {2\sqrt 2 + 1} \right)}^2}} \\
= \left| {3 - 2\sqrt 2 } \right| + \left| {2\sqrt 2 + 1} \right|\\
= 3 - 2\sqrt 2 + 2\sqrt 2 + 1\\
= 4
\end{array}\)