\(A_2=\dfrac{\sqrt{10}+\sqrt{5}}{\sqrt{2}+1}+\dfrac{3\sqrt{5}-5}{\sqrt{5}-3}+\dfrac{3}{\sqrt{3}}\\A_2=\dfrac{\sqrt{5}(\sqrt{2}+1)}{\sqrt{2}+1}+\dfrac{\sqrt{5}(3-\sqrt{5})}{\sqrt{5}-3}+\dfrac{3\sqrt{3}}{\sqrt{3}\sqrt{3}}\\A_2=\sqrt{5}-\sqrt{5}+\sqrt{3}= \sqrt{3}\)
\(\\\)
\(A_3=\dfrac{1}{\sqrt{3}-2}-\dfrac{2}{\sqrt{5}+\sqrt{3}}+\dfrac{1}{\sqrt{5}+2}\\A_3=\dfrac{1(\sqrt{3}+2)}{(\sqrt{3}-2)(\sqrt{3}+2)}-\dfrac{2(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}+\dfrac{1(\sqrt{5}-2)}{(\sqrt{5}+2)(\sqrt{5}-2)}\\A_3=-(\sqrt{3}+2)-(\sqrt{5}-\sqrt{3})+\sqrt{5}-2\\A_3=-\sqrt{3}-2+\sqrt{3}-2\\A_3= -4\)