Đáp án:
$\dfrac{303}{103}\\$
Giải thích các bước giải:
$\left ( 1+\dfrac{2}{1.4} \right ).\left ( +\dfrac{2}{2.5} \right ).\left ( 1+\dfrac{2}{3.6} \right )...\left ( 1+\dfrac{2}{100.103} \right )\\
=\dfrac{6}{1.4}.\dfrac{12}{2.5}.\dfrac{20}{3.6}...\dfrac{10302}{100.103}\\
=\dfrac{2.3}{1.4}.\dfrac{3.4}{2.5}.\dfrac{4.5}{3.6}...\dfrac{101.102}{100.103}\\
=\dfrac{2.3.4...101}{1.2.3...100}.\dfrac{3.4.5...102}{4.5.6...103}\\
=\dfrac{101}{1}.\dfrac{3}{103}\\
=\dfrac{303}{103}\\$