Đáp án:
c) P=1
Giải thích các bước giải:
\(\begin{array}{l}
a)DK:x \ge 0;x \ne 16\\
b)P = \dfrac{{3\sqrt x \left( {\sqrt x - 4} \right) + 2x + \sqrt x - 6 - \left( {\sqrt x - 1} \right)\left( {\sqrt x + 6} \right)}}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 6} \right)}}\\
= \dfrac{{3x - 12\sqrt x + 2x + \sqrt x - 6 - x - 5\sqrt x + 6}}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 6} \right)}}\\
= \dfrac{{4x - 16\sqrt x }}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 6} \right)}}\\
= \dfrac{{4\sqrt x \left( {\sqrt x - 4} \right)}}{{\left( {\sqrt x - 4} \right)\left( {\sqrt x + 6} \right)}}\\
= \dfrac{{4\sqrt x }}{{\sqrt x + 6}}\\
c)\left| {x - 10} \right| = 6\\
\to \left[ \begin{array}{l}
x - 10 = 6\\
x - 10 = - 6
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 16\left( l \right)\\
x = 4
\end{array} \right.\\
Thay:x = 4\\
\to P = \dfrac{{4\sqrt 4 }}{{\sqrt 4 + 6}} = \dfrac{8}{8} = 1
\end{array}\)