`8x-3(2x+3)\le10(x+2)-17`
`⇔ 8x - 6x - 9 \le 10x + 20 - 17`
`⇔ 2x - 9 \le 10x + 3`
`⇔ 2x - 10x \le 9 + 3`
`⇔ -8x \le 12`
`⇔ 8x \ge -12`
`⇔ x \ge -3/2`
Vậy `S = {x|x\ge-3/2}`
.....................................
`6x-3(x-3)\le8(x-1)-(2x-1)`
`⇔ 6x - 3x + 9 \le 8x - 8 - 2x + 1`
`⇔ 3x + 9 \le 6x - 7`
`⇔ 3x - 6x \le -7-9`
`⇔ -3x\le-16`
`⇔ 3x \ge 16`
`⇔ x \ge 16/3`
Vậy `S = {x|x\ge16/3}`
..................................................
`(x+6)/2 > (2x-1)/3`
`⇔ (3(x+6))/6 > (2(2x-1))/6`
`⇒ 3(x+6) > 2(2x-1)`
`⇔ 3x + 18 > 4x - 2`
`⇔ 3x - 4x > -2 - 18`
`⇔ -x > -20`
`⇔ x < 20`
Vậy `S = {x|x<20}`
.................................................
`(2(x+1))/3 \le (5(x-1))/6 - 1`
`⇔ (4(x+1))/6 \le (5(x-1))/6 - 1 * 6`
`⇒ 4(x+1) \le 5(x-1) - 6`
`⇔ 4x + 4 \le 5x - 5 - 6`
`⇔ 4x + 4 \le 5x - 11`
`⇔ 4x - 5x \le -11-4`
`⇔ -x \le -15`
`⇔ x \ge 15`
Vậy `S = {x|x\ge15}`