a/ ĐKXĐ: $x\ne 0;\pm 1$
$C=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x-1}{x}\\=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\left(\dfrac{x+1}{3x}-(x+1)\right)\right].\dfrac{x}{x-1}\\=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}.\dfrac{x+1}{3x}+\dfrac{2}{x+1}.(x+1)\right].\dfrac{x}{x-1}\\=\left[\dfrac{2}{3x}-\dfrac{2}{3x}+2\right].\dfrac{x}{x-1}\\=\dfrac{2x}{x-1}$
b/ $x^2+3x+2=0\\↔x^2+2x+x+2=0\\↔(x^2+2x)+(x+2)=0\\↔x(x+2)+(x+2)=0\\↔(x+1)(x+2)=0\\↔\left[\begin{array}{1}x+1=0\\x+2=0\end{array}\right.\\↔\left[\begin{array}{1}x=-1\\x=-2\end{array}\right.$
mà theo ĐKXĐ: $x\ne 0;\pm 1$
$→x=-2$
Với $x=-2$ (thỏa mãn điều kiện)
$→C=\dfrac{2.(-2)}{-2-1}=\dfrac{4}{3}$
c/ $C=\dfrac{-2}{3}\\→\dfrac{2x}{x-1}=\dfrac{-2}{3}\\↔\dfrac{6x}{3(x-1)}=\dfrac{-2(x-1)}{3(x-1)}\\↔6x=-2x+2\\↔8x=2\\↔x=\dfrac{1}{4}$
d/ $C<2\\→\dfrac{2x}{x-1}<2\\↔\dfrac{2x}{x-1}-2<0\\↔\dfrac{2x-2x+2}{x-1}<0\\↔\dfrac{2}{x-1}<0\\→x-1<0\\↔x<1$
Vậy $x<1$ thì $C<2$